login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(6) = 7, for n >= 7, a(n) = a(n - 1) + gcd(n, a(n - 1)).
6

%I #27 Jan 20 2024 17:49:22

%S 7,14,16,17,18,19,20,21,28,29,30,31,32,33,34,35,36,37,38,39,52,53,54,

%T 55,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,

%U 82,83,84,85,86,87,116,117,120,121,122,123,124,125,126,127,128

%N a(6) = 7, for n >= 7, a(n) = a(n - 1) + gcd(n, a(n - 1)).

%C For every n >= 7, a(n) - a(n - 1) is 1 or prime. This Rowland-like "generator of primes" is different from A106108 (see comment to A167168) and from A167170. Note that, lim sup a(n) / n = 2, while lim sup A106108(n) / n = lim sup A167170(n) / n = 3.

%C Going up to a million, differences of two consecutive terms of this sequence gives primes about 0.009% of the time. The rest are 1's. [_Alonso del Arte_, Nov 30 2009]

%H G. C. Greubel, <a href="/A167197/b167197.txt">Table of n, a(n) for n = 6..1000</a>

%H E. S. Rowland, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL11/Rowland/rowland21.html">A natural prime-generating recurrence</a>, Journal of Integer Sequences, 11 (2008), Article 08.2.8.

%H Vladimir Shevelev, <a href="https://arxiv.org/abs/0910.4676">An infinite set of generators of primes based on the Rowland idea and conjectures concerning twin primes</a>, arXiv:0910.4676 [math.NT], 2009.

%p A[6]:= 7:

%p for n from 7 to 100 do A[n]:= A[n-1] + igcd(n,A[n-1]) od:

%p seq(A[i],i=6..100); # _Robert Israel_, Jun 05 2016

%t a[6] = 7; a[n_ /; n > 6] := a[n] = a[n - 1] + GCD[n, a[n - 1]]; Table[a[n], {n, 6, 58}]

%o (Python)

%o from math import gcd

%o def aupton(nn):

%o alst = [7]

%o for n in range(7, nn+1): alst.append(alst[-1] + gcd(n, alst[-1]))

%o return alst

%o print(aupton(68)) # _Michael S. Branicky_, Jul 14 2021

%Y Cf. A167195, A167170, A167168, A106108, A132199, A167054, A167053, A166944, A166945, A116533, A163961, A163963, A084662, A084663, A134162, A135506, A135508, A118679, A120293.

%K nonn

%O 6,1

%A _Vladimir Shevelev_, Oct 30 2009, Nov 06 2009

%E Verified and edited by _Alonso del Arte_, Nov 30 2009