login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269173
Formula for Wolfram's Rule 126 cellular automaton: a(n) = (n XOR 2n) OR (n XOR 4n).
3
0, 7, 14, 15, 28, 31, 30, 27, 56, 63, 62, 63, 60, 63, 54, 51, 112, 119, 126, 127, 124, 127, 126, 123, 120, 127, 126, 127, 108, 111, 102, 99, 224, 231, 238, 239, 252, 255, 254, 251, 248, 255, 254, 255, 252, 255, 246, 243, 240, 247, 254, 255, 252, 255, 254, 251, 216, 223, 222, 223, 204, 207, 198, 195, 448, 455, 462
OFFSET
0,2
FORMULA
a(n) = A048724(n) OR A048725(n) = (n XOR 2n) OR (n XOR 4n), where OR is a bitwise-or (A003986) and XOR is A003987.
Other identities. For all n >= 0:
a(2*n) = 2*a(n).
a(n) = A057889(a(A057889(n))). [Rule 126 is amphichiral (symmetric).]
EXAMPLE
a(4) = (4 XOR 2*4) OR (4 XOR 4*4) = 12 OR 20 = 28. - Indranil Ghosh, Apr 02 2017
MATHEMATICA
Table[BitOr[BitXor[n, 2n], BitXor[n, 4n]], {n, 0, 100}] (* Indranil Ghosh, Apr 02 2017 *)
PROG
(Scheme) (define (A269173 n) (A003986bi (A048724 n) (A048725 n)))
(PARI) for(n=0, 100, print1(bitor(bitxor(n, 2*n), bitxor(n, 4*n)), ", ")) \\ Indranil Ghosh, Apr 02 2017
(Python) print([(n^(2*n))|(n^(4*n)) for n in range(101)]) # Indranil Ghosh, Apr 02 2017
(C)
#include <stdio.h>
int main()
{
int n;
for(n=0; n<=100; n++){
printf("%d, ", (n^(2*n))|(n^(4*n)));
}
return 0;
} /* Indranil Ghosh, Apr 02 2017 */
CROSSREFS
Cf. A267365 (iterates starting from 1).
Cf. A269174.
Sequence in context: A173024 A115770 A086779 * A167197 A336797 A100599
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 22 2016
STATUS
approved