login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Formula for Wolfram's Rule 126 cellular automaton: a(n) = (n XOR 2n) OR (n XOR 4n).
3

%I #24 May 09 2021 07:54:58

%S 0,7,14,15,28,31,30,27,56,63,62,63,60,63,54,51,112,119,126,127,124,

%T 127,126,123,120,127,126,127,108,111,102,99,224,231,238,239,252,255,

%U 254,251,248,255,254,255,252,255,246,243,240,247,254,255,252,255,254,251,216,223,222,223,204,207,198,195,448,455,462

%N Formula for Wolfram's Rule 126 cellular automaton: a(n) = (n XOR 2n) OR (n XOR 4n).

%H Antti Karttunen, <a href="/A269173/b269173.txt">Table of n, a(n) for n = 0..8191</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Rule126.html">Rule 126</a>

%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%F a(n) = A048724(n) OR A048725(n) = (n XOR 2n) OR (n XOR 4n), where OR is a bitwise-or (A003986) and XOR is A003987.

%F Other identities. For all n >= 0:

%F a(2*n) = 2*a(n).

%F a(n) = A057889(a(A057889(n))). [Rule 126 is amphichiral (symmetric).]

%e a(4) = (4 XOR 2*4) OR (4 XOR 4*4) = 12 OR 20 = 28. - _Indranil Ghosh_, Apr 02 2017

%t Table[BitOr[BitXor[n, 2n], BitXor[n, 4n]], {n, 0, 100}] (* _Indranil Ghosh_, Apr 02 2017 *)

%o (Scheme) (define (A269173 n) (A003986bi (A048724 n) (A048725 n)))

%o (PARI) for(n=0, 100, print1(bitor(bitxor(n, 2*n), bitxor(n, 4*n)),", ")) \\ _Indranil Ghosh_, Apr 02 2017

%o (Python) print([(n^(2*n))|(n^(4*n)) for n in range(101)]) # _Indranil Ghosh_, Apr 02 2017

%o (C)

%o #include <stdio.h>

%o int main()

%o {

%o int n;

%o for(n=0; n<=100; n++){

%o printf("%d, ",(n^(2*n))|(n^(4*n)));

%o }

%o return 0;

%o } /* _Indranil Ghosh_, Apr 02 2017 */

%Y Cf. A003986, A003987, A048724, A048725, A057889.

%Y Cf. A267365 (iterates starting from 1).

%Y Cf. A269174.

%K nonn

%O 0,2

%A _Antti Karttunen_, Feb 22 2016