The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A269174 Formula for Wolfram's Rule 124 cellular automaton: a(n) = (n OR 2n) AND ((n XOR 2n) OR (n XOR 4n)). 12
 0, 3, 6, 7, 12, 15, 14, 11, 24, 27, 30, 31, 28, 31, 22, 19, 48, 51, 54, 55, 60, 63, 62, 59, 56, 59, 62, 63, 44, 47, 38, 35, 96, 99, 102, 103, 108, 111, 110, 107, 120, 123, 126, 127, 124, 127, 118, 115, 112, 115, 118, 119, 124, 127, 126, 123, 88, 91, 94, 95, 76, 79, 70, 67, 192, 195, 198, 199, 204, 207, 206, 203, 216 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Antti Karttunen, Table of n, a(n) for n = 0..32767 Eric Weisstein's World of Mathematics, Elementary Cellular Automaton S. Wolfram, A New Kind of Science FORMULA a(n) = A163617(n) AND A269173(n). a(n) = A163617(n) AND (A048724(n) OR A048725(n)). a(n) = (n OR 2n) AND ((n XOR 2n) OR (n XOR 4n)). Other identities. For all n >= 0: a(2*n) = 2*a(n). a(n) = A057889(A161903(A057889(n))). [Rule 124 is the mirror image of rule 110.] MATHEMATICA a[n_] := BitAnd[BitOr[n, 2n], BitOr[BitXor[n, 2n], BitXor[n, 4n]]]; a /@ Range[0, 100] (* Jean-François Alcover, Feb 23 2020 *) PROG (Scheme) (define (A269174 n) (A004198bi (A163617 n) (A003986bi (A048724 n) (A048725 n)))) (Python) def a(n): return (n|2*n)&((n^(2*n))|(n^(4*n))) # Indranil Ghosh, Apr 19 2017 (Go) package main import "fmt" func main() {     for n:=0; n<=100; n++{     fmt.Println((n|2*n)&((n^(2*n))|(n^(4*n))))} } // Indranil Ghosh, Apr 19 2017 CROSSREFS Cf. A003986, A003987, A004198, A048724, A048725, A057889, A269173, A161903. Cf. A269175. Cf. A269176 (numbers not present in this sequence). Cf. A269177 (same sequence sorted into ascending order, duplicates removed). Cf. A269178 (numbers that occur only once). Cf. A267357 (iterates from 1 onward). Sequence in context: A242666 A226228 A335431 * A161903 A163617 A189634 Adjacent sequences:  A269171 A269172 A269173 * A269175 A269176 A269177 KEYWORD nonn AUTHOR Antti Karttunen, Feb 22 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 27 15:12 EDT 2021. Contains 346307 sequences. (Running on oeis4.)