|
|
A167053
|
|
a(1)=3; for n > 1, a(n) = 1 + a(n-1) + gcd( a(n-1)*(a(n-1)+2), A073829(a(n-1)) ).
|
|
11
|
|
|
3, 19, 39, 81, 165, 333, 335, 673, 1347, 1349, 1351, 1353, 1355, 1357, 1359, 2721, 2723, 2725, 2727, 5457, 5459, 5461, 5463, 5465, 5467, 5469, 10941, 10943, 10945, 10947, 21897, 21899, 21901, 21903, 21905, 21907, 21909, 43821, 43823, 43825, 43827, 43829, 43831
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The first differences are 16, 20, 42, etc. They are either 2 or in A075369 or in A008864, see A167054.
A proof follows from Clement's criterion of twin primes.
|
|
REFERENCES
|
E. Trost, Primzahlen, Birkhauser-Verlag, 1953, pages 30-31.
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 1..206
P. A. Clement, Congruences for sets of primes, Amer. Math. Monthly, 56 (1949), 23-25.
|
|
EXAMPLE
|
a(2) = 1 + 3 + gcd(3*5, 4*(2! + 1) + 3) = 19.
|
|
MAPLE
|
A073829 := proc(n) n+4*((n-1)!+1) ; end proc:
A167053 := proc(n) option remember ; local aprev; if n = 1 then 3; else aprev := procname(n-1) ; 1+aprev+gcd(aprev*(aprev+2), A073829(aprev)) ; end if; end proc:
seq(A167053(n), n=1..60) ; # R. J. Mathar, Dec 17 2009
|
|
MATHEMATICA
|
A073829[n_] := 4((n-1)! + 1) + n;
a[1] = 3;
a[n_] := a[n] = 1 + a[n-1] + GCD[a[n-1] (a[n-1] + 2), A073829[a[n-1]]];
Array[a, 60] (* Jean-François Alcover, Mar 25 2020 *)
|
|
CROSSREFS
|
Cf. A073829, A008864, A167054.
Cf. A166944, A166945, A116533, A163961, A163963, A084662, A084663, A106108, A132199, A134162, A135506, A135508, A118679, A120293.
Sequence in context: A147237 A117674 A114704 * A131542 A227878 A042371
Adjacent sequences: A167050 A167051 A167052 * A167054 A167055 A167056
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vladimir Shevelev, Oct 27 2009
|
|
EXTENSIONS
|
Definition shortened and values from a(4) on replaced by R. J. Mathar, Dec 17 2009
|
|
STATUS
|
approved
|
|
|
|