login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A167053 a(1)=3, else a(n)=1+a(n-1)+gcd( a(n-1)*(a(n-1)+2), A073829(a(n-1)) ). 11
3, 19, 39, 81, 165, 333, 335, 673, 1347, 1349, 1351, 1353, 1355, 1357, 1359, 2721, 2723, 2725, 2727, 5457, 5459, 5461, 5463, 5465, 5467, 5469, 10941, 10943, 10945, 10947, 21897, 21899, 21901, 21903, 21905, 21907, 21909, 43821, 43823, 43825, 43827, 43829, 43831 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The first differences are 16, 20, 42 etc. They are either 2 or in A075369 or in A008864, see A167054.

A proof follows from Clement's criterion of twin primes.

REFERENCES

E. Trost, Primzahlen, Birkhauser-Verlag, 1953, pages 30-31.

LINKS

Table of n, a(n) for n=1..43.

P. A. Clement, Congruences for sets of primes, Amer. Math. Monthly, 56 (1949), 23-25

EXAMPLE

a(2)=1+3+gcd(3*5, 4(2!+1)+3)=19.

MAPLE

A073829 := proc(n) n+4*((n-1)!+1) ; end proc:

A167053 := proc(n) option remember ; local aprev; if n = 1 then 3; else aprev := procname(n-1) ; 1+aprev+gcd(aprev*(aprev+2), A073829(aprev)) ; end if; end proc:

seq(A167053(n), n=1..60) ; # R. J. Mathar, Dec 17 2009

CROSSREFS

Cf. A166944, A166945, A116533, A163961, A163963, A084662, A084663, A106108, A132199, A134162, A135506, A135508, A118679, A120293

Sequence in context: A147237 A117674 A114704 * A131542 A227878 A042371

Adjacent sequences:  A167050 A167051 A167052 * A167054 A167055 A167056

KEYWORD

nonn

AUTHOR

Vladimir Shevelev, Oct 27 2009

EXTENSIONS

Definition shortened and values from a(4) on replaced by R. J. Mathar, Dec 17 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 18 11:35 EDT 2014. Contains 240707 sequences.