login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167170
a(6) = 14, for n >= 7, a(n) = a(n-1) + gcd(n, a(n-1)).
8
14, 21, 22, 23, 24, 25, 26, 39, 40, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 177, 180, 181, 182, 189, 190, 195
OFFSET
6,1
COMMENTS
For every n >= 7, a(n) - a(n-1) is 1 or prime. This Rowland-like "generator of primes" is different from A106108 (see comment to A167168).
LINKS
Eric S. Rowland, A natural prime-generating recurrence, J. of Integer Sequences 11 (2008), Article 08.2.8.
MAPLE
A167170 := proc(n) option remember; if n = 6 then 14; else procname(n-1)+igcd(n, procname(n-1)) ; end if; end proc: seq(A167170(i), i=6..80) ; # R. J. Mathar, Oct 30 2010
MATHEMATICA
RecurrenceTable[{a[n] == a[n - 1] + GCD[n, a[n - 1]], a[6] == 14}, a, {n, 6, 100}] (* G. C. Greubel, Jun 04 2016 *)
nxt[{n_, a_}]:={n+1, a+GCD[a, n+1]}; NestList[nxt, {6, 14}, 60][[All, 2]] (* Harvey P. Dale, Nov 03 2019 *)
PROG
(PARI) first(n)=my(v=vector(n-5)); v[1]=14; for(k=7, n, v[k-5]=v[k-6]+gcd(k, v[k-6])); v \\ Charles R Greathouse IV, Aug 22 2017
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Oct 29 2009, Nov 06 2009
EXTENSIONS
Terms > 91 from R. J. Mathar, Oct 30 2010
STATUS
approved