login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(6) = 14, for n >= 7, a(n) = a(n-1) + gcd(n, a(n-1)).
8

%I #29 Nov 03 2019 20:18:37

%S 14,21,22,23,24,25,26,39,40,45,46,47,48,49,50,51,52,53,54,55,56,57,58,

%T 87,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,

%U 109,110,111,112,113,114,115,116,117,118,177,180,181,182,189,190,195

%N a(6) = 14, for n >= 7, a(n) = a(n-1) + gcd(n, a(n-1)).

%C For every n >= 7, a(n) - a(n-1) is 1 or prime. This Rowland-like "generator of primes" is different from A106108 (see comment to A167168).

%H G. C. Greubel, <a href="/A167170/b167170.txt">Table of n, a(n) for n = 6..1000</a>

%H Eric S. Rowland, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL11/Rowland/rowland21.html">A natural prime-generating recurrence</a>, J. of Integer Sequences 11 (2008), Article 08.2.8.

%H V. Shevelev, <a href="http://arxiv.org/abs/0910.4676">An infinite set of generators of primes based on the Rowland idea and conjectures concerning twin primes</a>, arXiv:0910.4676 [math.NT], 2009.

%p A167170 := proc(n) option remember; if n = 6 then 14; else procname(n-1)+igcd(n,procname(n-1)) ; end if; end proc: seq(A167170(i),i=6..80) ; # _R. J. Mathar_, Oct 30 2010

%t RecurrenceTable[{a[n] == a[n - 1] + GCD[n, a[n - 1]], a[6] == 14}, a, {n, 6, 100}] (* _G. C. Greubel_, Jun 04 2016 *)

%t nxt[{n_,a_}]:={n+1,a+GCD[a,n+1]}; NestList[nxt,{6,14},60][[All,2]] (* _Harvey P. Dale_, Nov 03 2019 *)

%o (PARI) first(n)=my(v=vector(n-5)); v[1]=14; for(k=7,n, v[k-5]=v[k-6]+gcd(k,v[k-6])); v \\ _Charles R Greathouse IV_, Aug 22 2017

%Y Cf. A167168, A106108, A132199, A167054, A167053, A166944, A166945, A116533, A163961, A163963, A084662, A084663, A134162, A135506, A135508, A118679, A120293.

%K nonn

%O 6,1

%A _Vladimir Shevelev_, Oct 29 2009, Nov 06 2009

%E Terms > 91 from _R. J. Mathar_, Oct 30 2010