login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167167
A001045 with a(0) replaced by -1.
2
-1, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485, 178956971, 357913941, 715827883, 1431655765, 2863311531
OFFSET
0,4
COMMENTS
Essentially the same as A001045, and perhaps also A152046.
Also the binomial transform of the sequence with terms (-1)^(n+1)*A128209(n).
FORMULA
a(n) = A001045(n), n>0.
a(n) + a(n+1) = 2*A001782(n) = 2*A131577(n) = A155559(n) = A090129(n+2), n>0.
G.f.: (2*x^2 + 2*x - 1)/((1+x)*(1-2*x)).
E.g.f.: (exp(2*x) - exp(-x) - 3)/3. - G. C. Greubel, Dec 01 2019
MAPLE
seq( `if`(n=0, -1, (2^n -(-1)^n)/3), n=0..35); # G. C. Greubel, Dec 01 2019
MATHEMATICA
CoefficientList[Series[(2*x-1+2*x^2)/((1+x)*(1-2*x)), {x, 0, 35}], x] (* G. C. Greubel, Jun 04 2016 *)
Table[If[n==0, -1, (2^n -(-1)^n)/3], {n, 0, 35}] (* G. C. Greubel, Dec 01 2019 *)
PROG
(PARI) vector(36, n, if(n==1, -1, (2^(n-1) +(-1)^n)/3 ) ) \\ G. C. Greubel, Dec 01 2019
(Magma) [-1] cat [(2^n -(-1)^n)/3 : n in [1..35]]; // G. C. Greubel, Dec 01 2019
(Sage) [-1]+[lucas_number1(n, 1, -2) for n in (1..35)] # G. C. Greubel, Dec 01 2019
(GAP) Concatenation([-1], List([1..35], n-> (2^n -(-1)^n)/3) ); # G. C. Greubel, Dec 01 2019
CROSSREFS
Sequence in context: A284539 A154917 A328284 * A077925 A001045 A152046
KEYWORD
sign,less
AUTHOR
Paul Curtz, Oct 29 2009
EXTENSIONS
Edited and extended by R. J. Mathar, Nov 01 2009
STATUS
approved