login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001045 with a(0) replaced by -1.
2

%I #20 Nov 16 2024 12:00:01

%S -1,1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,21845,43691,

%T 87381,174763,349525,699051,1398101,2796203,5592405,11184811,22369621,

%U 44739243,89478485,178956971,357913941,715827883,1431655765,2863311531

%N A001045 with a(0) replaced by -1.

%C Essentially the same as A001045, and perhaps also A152046.

%C Also the binomial transform of the sequence with terms (-1)^(n+1)*A128209(n).

%H G. C. Greubel, <a href="/A167167/b167167.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,2).

%F a(n) = A001045(n), n>0.

%F a(n) + a(n+1) = 2*A001782(n) = 2*A131577(n) = A155559(n) = A090129(n+2), n>0.

%F G.f.: (2*x^2 + 2*x - 1)/((1+x)*(1-2*x)).

%F E.g.f.: (exp(2*x) - exp(-x) - 3)/3. - _G. C. Greubel_, Dec 01 2019

%p seq( `if`(n=0, -1, (2^n -(-1)^n)/3), n=0..35); # _G. C. Greubel_, Dec 01 2019

%t CoefficientList[Series[(2*x-1+2*x^2)/((1+x)*(1-2*x)), {x, 0, 35}], x] (* _G. C. Greubel_, Jun 04 2016 *)

%t Table[If[n==0, -1, (2^n -(-1)^n)/3], {n,0,35}] (* _G. C. Greubel_, Dec 01 2019 *)

%o (PARI) vector(36, n, if(n==1, -1, (2^(n-1) +(-1)^n)/3 ) ) \\ _G. C. Greubel_, Dec 01 2019

%o (Magma) [-1] cat [(2^n -(-1)^n)/3 : n in [1..35]]; // _G. C. Greubel_, Dec 01 2019

%o (Sage) [-1]+[lucas_number1(n, 1, -2) for n in (1..35)] # _G. C. Greubel_, Dec 01 2019

%o (GAP) Concatenation([-1], List([1..35], n-> (2^n -(-1)^n)/3) ); # _G. C. Greubel_, Dec 01 2019

%K sign,less

%O 0,4

%A _Paul Curtz_, Oct 29 2009

%E Edited and extended by _R. J. Mathar_, Nov 01 2009