login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008339
a(1)=1; for n >= 1, a(n+1) = lcm(a(n),n) / gcd(a(n),n).
5
1, 1, 2, 6, 6, 30, 5, 35, 280, 2520, 252, 2772, 231, 3003, 858, 1430, 5720, 97240, 437580, 8314020, 415701, 969969, 176358, 4056234, 2704156, 67603900, 2600150, 70204050, 10029150, 290845350, 9694845, 300540195, 9617286240, 35263382880, 1037158320
OFFSET
1,3
COMMENTS
a(n+1) = Product(A098666(n,k): 1<=k<=n), row-products of triangle A098666. - Reinhard Zumkeller, Sep 20 2004
a(n+1) is divisible by all primes in (n/2, n]; thus lim_{n->infinity} a(n) = infinity. - Franklin T. Adams-Watters, Dec 13 2006
LINKS
FORMULA
a(1) = 1, a(n) = a(n-1)*r/s where y is the largest divisor of a(n-1) with r*s = n. - Amarnath Murthy, Jul 01 2003
a(1) = 1, a(n+1) = a(n)*n/gcd(a(n),n)^2. - Franklin T. Adams-Watters, Dec 13 2006
MAPLE
A008339 := proc(n) option remember; if n = 1 then 1 else lcm(A008339(n-1), n-1)/gcd(A008339(n-1), n-1); fi; end;
MATHEMATICA
FoldList[ LCM[ #1, #2 ]/GCD[ #1, #2 ]&, 1, Range[ 30 ] ] (* Olivier Gérard, Aug 15 1997 *)
CROSSREFS
Cf. A249831.
Sequence in context: A072983 A055204 A212397 * A077139 A068629 A144361
KEYWORD
nonn
AUTHOR
STATUS
approved