login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379580
Denominators of the partial sums of the reciprocals of the powerfree part function (A055231).
3
1, 2, 6, 6, 30, 5, 35, 35, 35, 70, 770, 2310, 30030, 15015, 5005, 5005, 85085, 170170, 3233230, 3233230, 9699690, 4849845, 111546435, 111546435, 111546435, 223092870, 223092870, 223092870, 6469693230, 1078282205, 33426748355, 33426748355, 9116385915, 18232771830
OFFSET
1,2
REFERENCES
D. Suryanarayana and P. Subrahmanyam, The maximal k-full divisor of an integer, Indian J. Pure Appl. Math., Vol. 12, No. 2 (1981), pp. 175-190.
LINKS
Maurice-Étienne Cloutier, Les parties k-puissante et k-libre d'un nombre, Thèse de doctorat, Université Laval, Québec (2018).
Maurice-Étienne Cloutier, Jean-Marie De Koninck, and Nicolas Doyon, On the powerful and squarefree parts of an integer, Journal of Integer Sequences, Vol. 17 (2014), Article 14.6.6.
László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.11, pp. 31-32.
FORMULA
a(n) = denominator(Sum_{k=1..n} 1/A055231(k)).
MATHEMATICA
f[p_, e_] := If[e==1, p, 1]; powfree[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/powfree[n], {n, 1, 50}]]]
PROG
(PARI) powfree(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] == 1, f[i, 1], 1)); }
list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / powfree(k); print1(denominator(s), ", "))};
CROSSREFS
Cf. A055231, A370900, A370901, A379579 (numerators), A379582.
Sequence in context: A130087 A085087 A072983 * A055204 A212397 A008339
KEYWORD
nonn,easy,frac,new
AUTHOR
Amiram Eldar, Dec 26 2024
STATUS
approved