login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379577
a(n) = (n!)^n + n^n.
0
2, 2, 8, 243, 332032, 24883203125, 139314069504046656, 82606411253903523840823543, 6984964247141514123629140377616777216, 109110688415571316480344899355894085582848387420489, 395940866122425193243875570782668457763038822400000000010000000000, 409933016554924328182440935903164918932547530146724293451448320000000000285311670611
OFFSET
0,1
COMMENTS
The equation (k!)^n + k^n = (n!)^k + n^k holds if and only if n = k. See the Proof of the Theorem 2.2 (p.182-183) in the Alzer and Luca article in Links section.
LINKS
Horst Alzer and Florian Luca, Diophantine equations involving factorials, Mathematica Bohemica 142.2 (2017), 181-184.
FORMULA
a(n) = A036740(n) + A000312(n).
EXAMPLE
n = 3: a(3) = (3!)^3 + 3^3 = 243.
MAPLE
seq((n!)^n + n^n, n=0..12); # Georg Fischer, Dec 30 2024
MATHEMATICA
a[n_]:=(n!)^n + n^n; Array[a, 12, 0] (* Stefano Spezia, Dec 26 2024 *)
CROSSREFS
KEYWORD
nonn,easy,new
AUTHOR
Ctibor O. Zizka, Dec 26 2024
EXTENSIONS
a(9)-a(11) corrected by Georg Fischer, Dec 30 2024
STATUS
approved