login
A370900
Partial sums of the powerfree part function (A055231).
2
1, 3, 6, 7, 12, 18, 25, 26, 27, 37, 48, 51, 64, 78, 93, 94, 111, 113, 132, 137, 158, 180, 203, 206, 207, 233, 234, 241, 270, 300, 331, 332, 365, 399, 434, 435, 472, 510, 549, 554, 595, 637, 680, 691, 696, 742, 789, 792, 793, 795, 846, 859, 912, 914, 969, 976, 1033
OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 52.
LINKS
Eckford Cohen, An elementary method in the asymptotic theory of numbers, Duke Mathematical Journal, Vol. 28, No. 2 (1961), pp. 183-192.
Eckford Cohen, Some asymptotic formulas in the theory of numbers, Transactions of the American Mathematical Society, Vol. 112, No. 2 (1964), pp. 214-227.
László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.
FORMULA
a(n) = Sum_{k=1..n} A055231(k).
a(n) = c * n^2 / 2 + O(R(n)), where c = Product_{p prime} (1 - (p^2+p-1)/(p^3*(p+1))) = 0.649606699337... (A191622), R(n) = x^(3/2) * exp(-c_1 * log(n)^(3/5) / log(log(n))^(1/5)) unconditionally, or x^(7/5) * exp(c_2 * log(n) / log(log(n))) assuming the Riemann hypothesis, and c_1 and c_2 are positive constants (Tóth, 2017).
MATHEMATICA
f[p_, e_] := If[e == 1, p, 1]; pfp[n_] := Times @@ f @@@ FactorInteger[n]; pfp[1] = 1; Accumulate[Array[pfp[#] &, 100]]
PROG
(PARI) pfp(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, f[i, 1], 1)); }
lista(kmax) = {my(s = 0); for(k = 1, kmax, s += pfp(k); print1(s, ", "))};
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Mar 05 2024
STATUS
approved