OFFSET
0,3
COMMENTS
Sum_{k=1..n, k squarefree} (1/k) = Sum{k=1..n} (mu(k)^2/k) = (1/zeta(2))*(log(n) + gamma - 2*zeta'(2)/zeta(2)) + O(1/sqrt(n)). (Suryanarayana)
REFERENCES
D. Suryanarayana, Asymptotic formula for sum_{n <= x} mu^{2}(n)/n, Indian J. Math. 9 (1967/1968) 543-545.
LINKS
Amiram Eldar, Table of n, a(n) for n = 0..10000
Rafael Jakimczuk, Two Topics in Number Theory: Sum of Divisors of the Primorial and Sum of Squarefree Parts, International Mathematical Forum, Vol. 12, 2017, no. 7, pp. 331-338.
FORMULA
a(n) = Sum_{d=1..floor(sqrt(n))} f(d)*binomial(floor(n/d^2)+1, 2) where f(d)=A046970(d) is the product of 1-p^2 over all prime divisors p of d.
a(n) is asymptotic to r*n^2, where r = Pi^2/30 = 0.3289868...
MATHEMATICA
a[n_] := Sum[If[d == 1, 1, Times@@(1-#1[[1]]^2&) /@ FactorInteger[d]] * Binomial[Floor[n/d^2]+1, 2], {d, 1, Floor[Sqrt[n]]}]; Array[a, 100, 0] (* corrected by Amiram Eldar, Apr 02 2020 *)
PROG
(Magma) [0] cat [&+[Squarefree(k):k in [1..n]]:n in [1..60]]; // Marius A. Burtea, Dec 19 2019
(PARI) a(n) = sum(k=1, n, core(k)); \\ Michel Marcus, Dec 19 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Dean Hickerson, Apr 09 2002
STATUS
approved