

A069891


a(n) = Sum_{k=1..n} A007913(k), the squarefree part of k.


4



0, 1, 3, 6, 7, 12, 18, 25, 27, 28, 38, 49, 52, 65, 79, 94, 95, 112, 114, 133, 138, 159, 181, 204, 210, 211, 237, 240, 247, 276, 306, 337, 339, 372, 406, 441, 442, 479, 517, 556, 566, 607, 649, 692, 703, 708, 754, 801, 804, 805, 807, 858, 871, 924, 930, 985, 999
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Sum{1<=k<=n,k squarefree} (1/k) = Sum{1<=k<=n} (mu(k)^2/k) = (1/zeta(2))*(log(n)+gamma2*zeta'(2)/zeta(2))+O(1/sqrt(n)). (Suryanarayana)


REFERENCES

D. Suryanarayana, Asymptotic formula for sum_{n <= x} mu^{2}(n)/n, Indian J. Math. 9 (1967/1968) 543545.


LINKS

Table of n, a(n) for n=0..56.
Rafael Jakimczuk, Two Topics in Number Theory: Sum of Divisors of the Primorial and Sum of Squarefree Parts, International Mathematical Forum, Vol. 12, 2017, no. 7, pp. 331338.


FORMULA

a(n) is the sum from d=1 to sqrt(n) of f(d)*C(floor(n/d^2)+1, 2) where f(d)=A046970(d) is the product of 1p^2 over all prime divisors p of d and C(r, s) is the binomial coefficient r choose s.
a(n) is asymptotic to r*n^2, where r = Pi^2/30 = 0.3289868...


MATHEMATICA

a[n_] := Sum[Times@@(1#1[[1]]^2&)/@FactorInteger[d]*Binomial[Floor[n/d^2]+1, 2], {d, 1, Floor[Sqrt[n]]}]


CROSSREFS

Cf. A069087.
Sequence in context: A047705 A309839 A169799 * A190118 A249714 A250177
Adjacent sequences: A069888 A069889 A069890 * A069892 A069893 A069894


KEYWORD

nonn


AUTHOR

Dean Hickerson, Apr 09 2002


STATUS

approved



