login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098666
Triangle read by rows, 1<=k<=n: the n-th row contains the first n numbers after pairwise reducing all common divisors from left to right.
4
1, 1, 2, 1, 2, 3, 1, 1, 3, 2, 1, 1, 3, 2, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 5, 1, 7, 1, 1, 1, 1, 5, 1, 7, 8, 1, 1, 1, 1, 5, 1, 7, 8, 9, 1, 1, 1, 1, 1, 1, 7, 4, 9, 1, 1, 1, 1, 1, 1, 1, 7, 4, 9, 1, 11, 1, 1, 1, 1, 1, 1, 7, 1, 3, 1, 11, 1, 1, 1, 1, 1, 1, 1, 7, 1, 3, 1, 11, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 11, 1, 13, 2
OFFSET
1,3
COMMENTS
A098667(n) = Max{m: T(n,k)=1 for 1<=k<=m<=n};
A098668(n) = T(n,n);
T(A098669(n), A098669(n)) = 1;
A008339 gives row-products.
FORMULA
T(n, n)=X(n, n-1) and T(n, k)=T(n-1, k)/GCD(T(n-1, k), X(n, k-1)), where X(n, 0)=n and X(n, k)=X(n, k-1)/GCD(T(n-1, k), X(n, k-1)) for 1<=k<n.
MATHEMATICA
T[n_, n_] := X[n, n-1];
T[n_, k_] := T[n, k] = T[n-1, k]/GCD[T[n-1, k], X[n, k-1]];
X[n_, 0] := n;
X[n_, k_] := X[n, k] = X[n, k-1]/GCD[T[n-1, k], X[n, k-1]];
Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 20 2021 *)
CROSSREFS
Sequence in context: A215026 A162319 A237594 * A374443 A362890 A306251
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Sep 20 2004
STATUS
approved