login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098663
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+1,k+1) * 3^k.
4
1, 5, 30, 193, 1286, 8754, 60460, 421985, 2968902, 21019510, 149572292, 1068795930, 7664092060, 55121602436, 397464604440, 2872406652001, 20799171328070, 150869330458830, 1096046132412628, 7973709600124958, 58081342410990516, 423551998861478140
OFFSET
0,2
LINKS
FORMULA
G.f.: ((1+2*x) - sqrt(1-8*x+4*x^2))/(6*x*sqrt(1-8*x+4*x^2)).
E.g.f.: exp(4x)*(BesselI(0, 2*sqrt(3)*x) + BesselI(1, 2*sqrt(3)*x)/sqrt(3)).
Recurrence: (n+1)*(2*n-1)*a(n) = 2*(8*n^2-3)*a(n-1) - 4*(n-1)*(2*n+1)*a(n-2). - Vaclav Kotesovec, Oct 15 2012
a(n) ~ sqrt(12+7*sqrt(3))*(4+2*sqrt(3))^n/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012
a(n) = 3^n*hypergeom([-n, -n - 1], [1], 1/3). - Detlef Meya, May 21 2024
From Peter Bala, Sep 02 2024: (Start)
The following formulas assume an offset of 1 (i.e., a(1) = 1, a(2) = 5, etc.):
a(n) = (1/3) * [x^n] ((2*x - 1)/(1 + x))^n = (1/3) * A255688(n).
a(n) = (1/3) * Sum_{k = 0..n} binomial(n, k)*binomial(n+k-1, k)*2^(n-k).
a(n) = (1/3) * 2^n * hypergeom([n, -n], [1], -1/2).
The Gauss congruences a(n*p^r) == a(n*p^(r-1)) (mod p^r) hold for all primes p >= 5 and all positive integers n and r. (End)
MAPLE
seq(simplify(3^n*hypergeom([-n, -n-1], [1], 1/3)), n = 0..20); # Peter Bala, Sep 02 2024
MATHEMATICA
Table[Sum[Binomial[n, k]Binomial[n+1, k+1]3^k, {k, 0, n}], {n, 0, 20}] (* Harvey P. Dale, Nov 08 2011 *)
a[n_] := 3^n*HypergeometricPFQ[{-n, -n - 1}, {1}, 1/3]; Flatten[Table[a[n], {n, 0, 21}]] (* Detlef Meya, May 21 2024 *)
PROG
(PARI) my(x='x+O('x^66)); Vec(((1+2*x)-sqrt(1-8*x+4*x^2))/(6*x*sqrt(1-8*x+4*x^2))) \\ Joerg Arndt, May 12 2013
CROSSREFS
Fourth binomial transform of A098662.
Cf. A255688.
Sequence in context: A059273 A352175 A038744 * A265085 A158828 A264910
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 20 2004
STATUS
approved