Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Sep 02 2024 13:04:51
%S 1,5,30,193,1286,8754,60460,421985,2968902,21019510,149572292,
%T 1068795930,7664092060,55121602436,397464604440,2872406652001,
%U 20799171328070,150869330458830,1096046132412628,7973709600124958,58081342410990516,423551998861478140
%N a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+1,k+1) * 3^k.
%H Vincenzo Librandi, <a href="/A098663/b098663.txt">Table of n, a(n) for n = 0..200</a>
%F G.f.: ((1+2*x) - sqrt(1-8*x+4*x^2))/(6*x*sqrt(1-8*x+4*x^2)).
%F E.g.f.: exp(4x)*(BesselI(0, 2*sqrt(3)*x) + BesselI(1, 2*sqrt(3)*x)/sqrt(3)).
%F Recurrence: (n+1)*(2*n-1)*a(n) = 2*(8*n^2-3)*a(n-1) - 4*(n-1)*(2*n+1)*a(n-2). - _Vaclav Kotesovec_, Oct 15 2012
%F a(n) ~ sqrt(12+7*sqrt(3))*(4+2*sqrt(3))^n/(3*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 15 2012
%F a(n) = 3^n*hypergeom([-n, -n - 1], [1], 1/3). - _Detlef Meya_, May 21 2024
%F From _Peter Bala_, Sep 02 2024: (Start)
%F The following formulas assume an offset of 1 (i.e., a(1) = 1, a(2) = 5, etc.):
%F a(n) = (1/3) * [x^n] ((2*x - 1)/(1 + x))^n = (1/3) * A255688(n).
%F a(n) = (1/3) * Sum_{k = 0..n} binomial(n, k)*binomial(n+k-1, k)*2^(n-k).
%F a(n) = (1/3) * 2^n * hypergeom([n, -n], [1], -1/2).
%F The Gauss congruences a(n*p^r) == a(n*p^(r-1)) (mod p^r) hold for all primes p >= 5 and all positive integers n and r. (End)
%p seq(simplify(3^n*hypergeom([-n, -n-1], [1], 1/3)), n = 0..20); # _Peter Bala_, Sep 02 2024
%t Table[Sum[Binomial[n,k]Binomial[n+1,k+1]3^k,{k,0,n}],{n,0,20}] (* _Harvey P. Dale_, Nov 08 2011 *)
%t a[n_] := 3^n*HypergeometricPFQ[{-n, -n - 1}, {1}, 1/3]; Flatten[Table[a[n], {n,0,21}]] (* _Detlef Meya_, May 21 2024 *)
%o (PARI) my(x='x+O('x^66)); Vec(((1+2*x)-sqrt(1-8*x+4*x^2))/(6*x*sqrt(1-8*x+4*x^2))) \\ _Joerg Arndt_, May 12 2013
%Y Fourth binomial transform of A098662.
%Y Cf. A255688.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Sep 20 2004