login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309708
Sum of the odd parts appearing among the smallest parts of the partitions of n into 4 parts.
1
0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 13, 15, 20, 25, 31, 36, 45, 51, 65, 74, 89, 103, 121, 136, 159, 177, 208, 231, 265, 296, 335, 369, 416, 455, 514, 561, 625, 684, 756, 820, 904, 976, 1076, 1160, 1268, 1368, 1488, 1596, 1732, 1852, 2009, 2145, 2314, 2471
OFFSET
0,7
FORMULA
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} k * (k mod 2).
From Colin Barker, Aug 23 2019: (Start)
G.f.: x^4*(1 + x^8) / ((1 - x)^5*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2)*(1 + x^4)^2).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) + 2*a(n-8) - 2*a(n-9) - 2*a(n-10) + 2*a(n-12) + 2*a(n-13) - 2*a(n-14) - a(n-16) + a(n-17) + a(n-18) - a(n-20) - a(n-21) + a(n-22) for n > 21.
(End)
EXAMPLE
Figure 1: The partitions of n into 4 parts for n = 8, 9, ..
1+1+1+9
1+1+2+8
1+1+3+7
1+1+4+6
1+1+1+8 1+1+5+5
1+1+2+7 1+2+2+7
1+1+1+7 1+1+3+6 1+2+3+6
1+1+2+6 1+1+4+5 1+2+4+5
1+1+3+5 1+2+2+6 1+3+3+5
1+1+1+6 1+1+4+4 1+2+3+5 1+3+4+4
1+1+1+5 1+1+2+5 1+2+2+5 1+2+4+4 2+2+2+6
1+1+2+4 1+1+3+4 1+2+3+4 1+3+3+4 2+2+3+5
1+1+3+3 1+2+2+4 1+3+3+3 2+2+2+5 2+2+4+4
1+2+2+3 1+2+3+3 2+2+2+4 2+2+3+4 2+3+3+4
2+2+2+2 2+2+2+3 2+2+3+3 2+3+3+3 3+3+3+3
--------------------------------------------------------------------------
n | 8 9 10 11 12 ...
--------------------------------------------------------------------------
a(n) | 4 5 7 8 13 ...
--------------------------------------------------------------------------
MATHEMATICA
Table[Sum[Sum[Sum[k * Mod[k, 2], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 50}]
LinearRecurrence[{1, 1, 0, -1, -1, 1, 0, 2, -2, -2, 0, 2, 2, -2, 0, -1, 1, 1, 0, -1, -1, 1}, {0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 13, 15, 20, 25, 31, 36, 45, 51, 65, 74}, 80] (* Wesley Ivan Hurt, Sep 04 2019 *)
PROG
(PARI) concat([0, 0, 0, 0], Vec(x^4*(1 + x^8) / ((1 - x)^5*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2)*(1 + x^4)^2) + O(x^60))) \\ Colin Barker, Aug 23 2019
CROSSREFS
Sequence in context: A057484 A091997 A124168 * A285929 A309880 A054762
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Aug 13 2019
STATUS
approved