login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309710
Decimal expansion of Sum_{k>=1} Kronecker(-8,k)/k^2.
5
1, 0, 6, 4, 7, 3, 4, 1, 7, 1, 0, 4, 3, 5, 0, 3, 3, 7, 0, 3, 9, 2, 8, 2, 7, 4, 5, 1, 4, 6, 1, 6, 6, 8, 8, 8, 9, 4, 8, 3, 0, 9, 9, 1, 5, 1, 7, 7, 4, 4, 8, 5, 1, 2, 4, 4, 1, 9, 8, 7, 4, 5, 0, 8, 0, 6, 3, 9, 9, 0, 1, 7, 1, 7, 5, 8, 6, 4, 3, 7, 6, 3, 6, 6, 6, 5, 3, 4, 2, 5, 0
OFFSET
1,3
COMMENTS
Let Chi() be a primitive character modulo d, the so-called Dirichlet L-series L(s,Chi) is the analytic continuation (see the functional equations involving L(s,Chi) in the MathWorld link entitled Dirichlet L-Series) of the sum Sum_{k>=1} Chi(k)/k^s, Re(s)>0 (if d = 1, the sum converges requires Re(s)>1).
If s != 1, we can represent L(s,Chi) in terms of the Hurwitz zeta function by L(s,Chi) = (Sum_{k=1..d} Chi(k)*zeta(s,k/d))/d^s.
L(s,Chi) can also be represented in terms of the polylog function by L(s,Chi) = (Sum_{k=1..d} Chi'(k)*polylog(s,u^k))/(Sum_{k=1..d} Chi'(k)*u^k), where Chi' is the complex conjugate of Chi, u is any primitive d-th root of unity.
If m is a positive integer, we have L(m,Chi) = (Sum_{k=1..d} Chi(k)*polygamma(m-1,k/d))/((-d)^m*(m-1)!).
In this sequence we have Chi = A188510 and s = 2.
LINKS
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 98.
Eric Weisstein's World of Mathematics, Dirichlet L-Series.
Eric Weisstein's World of Mathematics, Polygamma Function.
FORMULA
Equals (zeta(2,1/8) + zeta(2,3/8) - zeta(2,5/8) - zeta(2,7/8))/64, where zeta(s,a) is the Hurwitz zeta function.
Equals (polylog(2,u) + polylog(2,u^3) - polylog(2,-u) - polylog(2,-u^3))/sqrt(-8), where u = sqrt(2)/2 + i*sqrt(2)/2 is an 8th primitive root of unity, i = sqrt(-1).
Equals (polygamma(1,1/8) + polygamma(1,3/8) - polygamma(1,5/8) - polygamma(1,7/8))/64.
Equals 1/(Product_{p prime == 1 or 3 (mod 8)} (1 - 1/p^2) * Product_{p prime == 5 or 7 (mod 8)} (1 + 1/p^2)). - Amiram Eldar, Dec 17 2023
EXAMPLE
1 + 1/3^2 - 1/5^2 - 1/7^2 + 1/9^2 + 1/11^2 - 1/13^2 - 1/15^2 + ...= 1.0647341710...
MATHEMATICA
(PolyGamma[1, 1/8] + PolyGamma[1, 3/8] - PolyGamma[1, 5/8] - PolyGamma[1, 7/8])/64 // RealDigits[#, 10, 102] & // First
CROSSREFS
Cf. A188510.
Decimal expansion of Sum_{k>=1} Kronecker(d,k)/k^2, where d is a fundamental discriminant: this sequence (d=-8), A103133 (d=-7), A006752 (d=-4), A086724 (d=-3), A013661 (d=1), A328717 (d=5), A328895 (d=8), A258414 (d=12).
Decimal expansion of Sum_{k>=1} Kronecker(-8,k)/k^s: A093954 (s=1), this sequence (s=2), A251809 (s=3).
Sequence in context: A105160 A353773 A200228 * A241297 A021611 A011425
KEYWORD
nonn,cons
AUTHOR
Jianing Song, Nov 19 2019
STATUS
approved