login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200228
Decimal expansion of greatest x satisfying 3*x^2 - cos(x) = 4*sin(x).
3
1, 1, 6, 4, 7, 2, 0, 1, 3, 2, 6, 0, 0, 0, 8, 6, 5, 4, 8, 1, 4, 4, 1, 7, 3, 6, 0, 3, 9, 1, 7, 6, 2, 9, 3, 4, 2, 8, 3, 8, 8, 5, 9, 8, 2, 9, 2, 3, 6, 1, 6, 8, 4, 5, 0, 1, 3, 9, 9, 2, 3, 7, 8, 1, 6, 7, 5, 4, 2, 8, 8, 0, 2, 7, 2, 0, 0, 6, 5, 0, 9, 7, 8, 3, 9, 7, 1, 5, 4, 7, 9, 2, 5, 5, 4, 8, 9, 5, 0
OFFSET
1,3
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.21220726159791829897823740501037540...
greatest x: 1.164720132600086548144173603917629...
MATHEMATICA
a = 3; b = -1; c = 4;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /.FindRoot[f[x] == g[x], {x, -.22, -.21}, WorkingPrecision -> 110]
RealDigits[r] (* A200227 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110]
RealDigits[r] (* A200228 *)
PROG
(PARI) a=3; b=-1; c=4; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 30 2018
CROSSREFS
Cf. A199949.
Sequence in context: A141796 A105160 A353773 * A309710 A241297 A021611
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 14 2011
STATUS
approved