The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200228 Decimal expansion of greatest x satisfying 3*x^2 - cos(x) = 4*sin(x). 3
 1, 1, 6, 4, 7, 2, 0, 1, 3, 2, 6, 0, 0, 0, 8, 6, 5, 4, 8, 1, 4, 4, 1, 7, 3, 6, 0, 3, 9, 1, 7, 6, 2, 9, 3, 4, 2, 8, 3, 8, 8, 5, 9, 8, 2, 9, 2, 3, 6, 1, 6, 8, 4, 5, 0, 1, 3, 9, 9, 2, 3, 7, 8, 1, 6, 7, 5, 4, 2, 8, 8, 0, 2, 7, 2, 0, 0, 6, 5, 0, 9, 7, 8, 3, 9, 7, 1, 5, 4, 7, 9, 2, 5, 5, 4, 8, 9, 5, 0 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS See A199949 for a guide to related sequences.  The Mathematica program includes a graph. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 EXAMPLE least x: -0.21220726159791829897823740501037540... greatest x: 1.164720132600086548144173603917629... MATHEMATICA a = 3; b = -1; c = 4; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /.FindRoot[f[x] == g[x], {x, -.22, -.21}, WorkingPrecision -> 110] RealDigits[r]   (* A200227 *) r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110] RealDigits[r]   (* A200228 *) PROG (PARI) a=3; b=-1; c=4; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 30 2018 CROSSREFS Cf. A199949. Sequence in context: A164293 A141796 A105160 * A309710 A241297 A021611 Adjacent sequences:  A200225 A200226 A200227 * A200229 A200230 A200231 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 14 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 10:50 EST 2020. Contains 331171 sequences. (Running on oeis4.)