login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A200226
Decimal expansion of greatest x satisfying 3*x^2 - cos(x) = 3*sin(x).
3
1, 0, 1, 2, 2, 6, 5, 5, 6, 2, 9, 6, 9, 2, 0, 9, 4, 1, 7, 3, 3, 4, 5, 5, 4, 4, 1, 9, 9, 3, 8, 2, 7, 2, 1, 4, 5, 5, 8, 9, 6, 1, 2, 7, 1, 3, 9, 8, 2, 8, 6, 8, 9, 9, 1, 3, 1, 2, 1, 0, 7, 8, 3, 4, 0, 7, 3, 9, 5, 8, 9, 3, 1, 6, 8, 9, 8, 9, 6, 3, 8, 0, 4, 1, 5, 9, 0, 7, 5, 0, 4, 6, 8, 3, 4, 6, 0, 0, 5
OFFSET
1,4
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.25837586008348694859843826122973...
greatest x: 1.012265562969209417334554419938...
MATHEMATICA
a = 3; b = -1; c = 3;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.26, -.25}, WorkingPrecision -> 110]
RealDigits[r] (* A200225 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]
RealDigits[r] (* A200226 *)
PROG
(PARI) a=3; b=-1; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 30 2018
CROSSREFS
Cf. A199949.
Sequence in context: A144160 A368228 A275142 * A300628 A379822 A115255
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 14 2011
STATUS
approved