login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309713
Sum of the odd parts appearing among the third largest parts of the partitions of n into 4 parts.
0
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 7, 10, 17, 20, 27, 30, 42, 50, 67, 80, 102, 115, 144, 164, 200, 227, 270, 304, 363, 406, 474, 526, 603, 664, 761, 842, 959, 1051, 1179, 1282, 1434, 1561, 1737, 1888, 2088, 2252, 2480, 2672, 2928, 3148, 3432, 3680, 4009, 4289
OFFSET
0,7
FORMULA
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} j * (j mod 2).
EXAMPLE
Figure 1: The partitions of n into 4 parts for n = 8, 9, ..
1+1+1+9
1+1+2+8
1+1+3+7
1+1+4+6
1+1+1+8 1+1+5+5
1+1+2+7 1+2+2+7
1+1+1+7 1+1+3+6 1+2+3+6
1+1+2+6 1+1+4+5 1+2+4+5
1+1+3+5 1+2+2+6 1+3+3+5
1+1+1+6 1+1+4+4 1+2+3+5 1+3+4+4
1+1+1+5 1+1+2+5 1+2+2+5 1+2+4+4 2+2+2+6
1+1+2+4 1+1+3+4 1+2+3+4 1+3+3+4 2+2+3+5
1+1+3+3 1+2+2+4 1+3+3+3 2+2+2+5 2+2+4+4
1+2+2+3 1+2+3+3 2+2+2+4 2+2+3+4 2+3+3+4
2+2+2+2 2+2+2+3 2+2+3+3 2+3+3+3 3+3+3+3
--------------------------------------------------------------------------
n | 8 9 10 11 12 ...
--------------------------------------------------------------------------
a(n) | 3 3 7 10 17 ...
--------------------------------------------------------------------------
- Wesley Ivan Hurt, Sep 08 2019
MATHEMATICA
Table[Sum[Sum[Sum[j * Mod[j, 2], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 50}]
CROSSREFS
Sequence in context: A032060 A241385 A307736 * A153903 A331729 A095741
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 13 2019
STATUS
approved