login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309716
Sum of the even parts appearing among the third largest parts of the partitions of n into 4 parts.
0
0, 0, 0, 0, 0, 0, 0, 2, 4, 6, 8, 10, 12, 18, 24, 34, 44, 54, 64, 80, 96, 118, 140, 168, 196, 232, 268, 312, 356, 408, 460, 530, 600, 680, 760, 850, 940, 1052, 1164, 1298, 1432, 1578, 1724, 1896, 2068, 2266, 2464, 2688, 2912, 3166, 3420, 3704, 3988, 4302
OFFSET
0,8
FORMULA
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} j * ((j-1) mod 2).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - 2*a(n-7) + 4*a(n-8) - 6*a(n-9) + 6*a(n-10) - 6*a(n-11) + 5*a(n-12) - 4*a(n-13) + 4*a(n-15) - 5*a(n-16) + 6*a(n-17) - 6*a(n-18) + 6*a(n-19) - 4*a(n-20) + 2*a(n-21) - 2*a(n-23) + 2*a(n-24) - 2*a(n-25) + 2*a(n-26) - 2*a(n-27) + a(n-28) for n > 27. - Wesley Ivan Hurt, Sep 04 2019
EXAMPLE
Figure 1: The partitions of n into 4 parts for n = 8, 9, ..
1+1+1+9
1+1+2+8
1+1+3+7
1+1+4+6
1+1+1+8 1+1+5+5
1+1+2+7 1+2+2+7
1+1+1+7 1+1+3+6 1+2+3+6
1+1+2+6 1+1+4+5 1+2+4+5
1+1+3+5 1+2+2+6 1+3+3+5
1+1+1+6 1+1+4+4 1+2+3+5 1+3+4+4
1+1+1+5 1+1+2+5 1+2+2+5 1+2+4+4 2+2+2+6
1+1+2+4 1+1+3+4 1+2+3+4 1+3+3+4 2+2+3+5
1+1+3+3 1+2+2+4 1+3+3+3 2+2+2+5 2+2+4+4
1+2+2+3 1+2+3+3 2+2+2+4 2+2+3+4 2+3+3+4
2+2+2+2 2+2+2+3 2+2+3+3 2+3+3+3 3+3+3+3
--------------------------------------------------------------------------
n | 8 9 10 11 12 ...
--------------------------------------------------------------------------
a(n) | 4 6 8 10 12 ...
--------------------------------------------------------------------------
- Wesley Ivan Hurt, Sep 04 2019
MATHEMATICA
Table[Sum[Sum[Sum[j * Mod[j - 1, 2], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 50}]
LinearRecurrence[{2, -2, 2, -2, 2, 0, -2, 4, -6, 6, -6, 5, -4, 0, 4, -5, 6, -6, 6, -4, 2, 0, -2, 2, -2, 2, -2, 1}, {0, 0, 0, 0, 0, 0, 0, 2, 4, 6, 8, 10, 12, 18, 24, 34, 44, 54, 64, 80, 96, 118, 140, 168, 196, 232, 268, 312}, 60] (* Wesley Ivan Hurt, Sep 04 2019 *)
CROSSREFS
Sequence in context: A162763 A113242 A343716 * A198186 A379294 A264984
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 13 2019
STATUS
approved