login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124168
Union of all n-Fibonacci sequences, that is, all sequences s(0) = s(1) = ... = s(n-2) = 0, s(n-1) = 1 and for k >= n, s(k) = s(k-1) + ... + s(k-n).
5
1, 2, 3, 4, 5, 7, 8, 13, 15, 16, 21, 24, 29, 31, 32, 34, 44, 55, 56, 61, 63, 64, 81, 89, 108, 120, 125, 127, 128, 144, 149, 208, 233, 236, 248, 253, 255, 256, 274, 377, 401, 464, 492, 504, 509, 511, 512, 610, 773, 912, 927, 976, 987, 1004, 1016, 1021, 1023, 1024
OFFSET
1,2
COMMENTS
Note that an n-Fibonacci sequence contains the numbers 2^k numbers for k<n. We also get 2^n-1, 2^(n+1)-3, 2^(n+2)-8, ... The sequence -1, -3, -8, continues following A001792 (for n large)...
Noe and Post conjectured that the only positive terms that are common to any two distinct n-step Fibonacci sequences are the powers of 2 that begin each sequence and 13 (in 2- and 3-step) and 504 (in 3- and 7-step). Perhaps we should also include 8 (in 2- and 4-step). - T. D. Noe, Dec 05 2006
LINKS
Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4.
FORMULA
MATHEMATICA
NFib25[nfb_] := Transpose[NestList[Join[Drop[ #, {1}], {Plus @@ #}] &, Map[If[ # == nfb, 1, 0] &, Range[nfb]], 25]][[ -1]]; Union[Flatten[Map[NFib25, Range[2, 20]]]][[Range[100]]]
NFib[nfb_, lim_] := Module[{f = 2^Range[0, nfb - 1]}, While[f[[-1]] <= lim, AppendTo[f, Total[Take[f, -nfb]]]]; Most[f]]; lim = 12; Union[Flatten[Table[NFib[i, 2^lim], {i, 2, lim + 1}]]] (* T. D. Noe, Oct 25 2013 *)
CROSSREFS
Cf. A227880 (primes here).
Sequence in context: A247350 A057484 A091997 * A309708 A285929 A309880
KEYWORD
nonn
AUTHOR
Carlos Alves, Dec 03 2006
EXTENSIONS
Edited by N. J. A. Sloane, Dec 15 2006
STATUS
approved