login
A224245
Number of n-permutations in which there is a unique smallest cycle.
2
1, 1, 5, 14, 89, 474, 3499, 27040, 253161, 2426300, 27596051, 323960856, 4277055925, 59041067344, 898062119655, 14172430400864, 243919993681649, 4347177953716080, 83224487266425811, 1653277176082392040, 34961357216796300381, 763702067489722288136
OFFSET
1,3
COMMENTS
In other words, if the smallest cycle in the n-permutation has length k then no other cycle in the permutation has length k.
LINKS
FORMULA
E.g.f.: Sum_{k>=1} x^k/k * exp(-Sum_{i=1..k}x^i/i)/(1-x).
EXAMPLE
a(4) = 14 because we have 14 such permutations of {1,2,3,4} shown in cycle notation: {{1}, {3,4,2}}, {{1}, {4,3,2}}, {{2,3,1}, {4}}, {{2,3,4,1}}, {{2,4,3,1}}, {{2,4,1}, {3}}, {{3,2,1}, {4}}, {{3,4,2,1}}, {{3,4,1}, {2}}, {{3,2,4,1}}, {{4,3,2,1}}, {{4,2,1}, {3}}, {{4,3,1}, {2}}, {{4,2,3,1}}.
MAPLE
with(combinat):
b:= proc(n, i) option remember;
`if`(i<1, 0, `if`(n=i, (i-1)!, 0) +add(b(n-i*j, i-1)*
multinomial(n, n-i*j, i$j)/j!*(i-1)!^j, j=0..(n-1)/i))
end:
a:= n-> b(n$2):
seq(a(n), n=1..25); # Alois P. Heinz, Sep 07 2020
MATHEMATICA
nn=20; Drop[Range[0, nn]! CoefficientList[Series[Sum[x^k/k Exp[-Sum[x^i/i, {i, 1, k}]]/(1-x), {k, 1, nn}], {x, 0, nn}], x], 1]
CROSSREFS
Sequence in context: A198039 A198091 A197797 * A374510 A238380 A183307
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Apr 01 2013
STATUS
approved