The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238380 Numbers k such that the average of the divisors of k and k+1 is the same. 8
 5, 14, 91, 1334, 1634, 2685, 3478, 5452, 9063, 13915, 16225, 20118, 20712, 33998, 42818, 47795, 64665, 79338, 84134, 103410, 106144, 109214, 111683, 122073, 123497, 133767, 166934, 170884, 203898, 224561, 228377, 267630, 289454, 383594, 384857, 391348, 440013 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The average of the divisors of n is equal to sigma(n)/tau(n). Up to 5*10^12, there are only 3 terms for which the mean is not an integer, namely 254641594575, 280895287491 and 328966666100. LINKS Giovanni Resta, Table of n, a(n) for n = 1..6934 (terms < 5*10^12) EXAMPLE 91 is a term since the average of the divisors of 91 and 92 is the same. Indeed, (1+7+13+91)/4 = (1+2+4+23+46+92)/6. MATHEMATICA av[n_] := DivisorSigma[1, n]/DivisorSigma[0, n]; Select[Range[10^5], av[#] == av[# + 1] &] SequencePosition[Table[DivisorSigma[1, n]/DivisorSigma[0, n], {n, 450000}], {x_, x_}][[All, 1]] (* Harvey P. Dale, Jun 01 2022 *) PROG (Python) from sympy import divisors from fractions import Fraction def aupto(limit): alst, prev_divavg = [], 1 for n in range(2, limit+2): divs = divisors(n) divavg = Fraction(sum(divs), len(divs)) if divavg == prev_divavg: alst.append(n-1) prev_divavg = divavg return alst print(aupto(440013)) # Michael S. Branicky, May 14 2021 CROSSREFS Cf. A002961. Sequence in context: A198091 A197797 A224245 * A183307 A334547 A348777 Adjacent sequences: A238377 A238378 A238379 * A238381 A238382 A238383 KEYWORD nonn AUTHOR Giovanni Resta, Feb 25 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 4 22:06 EST 2024. Contains 370532 sequences. (Running on oeis4.)