Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Nov 02 2024 04:06:53
%S 1,1,2,2,9,17,63,261,1088,4374,24583,133861,740303,4514824,29945555,
%T 205127474,1464586617,10971233035,86410874373,708423380237,
%U 6026435657580,53117555943951,485246803230148,4589013046619689,44819208415713035,451184268041122808
%N Number of set partitions of {1,2,...,n} such that the size of the smallest block is unique and it contains the element 1.
%H Alois P. Heinz, <a href="/A224244/b224244.txt">Table of n, a(n) for n = 1..578</a>
%H P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; page 139.
%F E.g.f.: Sum_{k>=1} Integral of x^(k-1)/(k-1)! * exp(exp(x) - Sum_{i=0..k} x^i/i!) dx.
%e a(5) = 9 because we have: {{1,2,3,4,5}}, {{1},{2,3,4,5}}, {{1,2},{3,4,5}}, {{1,3},{2,4,5}}, {{1,5},{2,3,4}}, {{1,4},{2,3,5}}, {{1},{2,3},{4,5}}, {{1},{2,5},{3,4}}, {{1},{2,4},{3,5}}.
%p b:= proc(n, t) option remember; `if`(n=0, 1, add(
%p binomial(n-1, i-1)*b(n-i, `if`(t=1, i+1, t)), i=t..n))
%p end:
%p a:= n-> `if`(n=0, 0, b(n, 1)):
%p seq(a(n), n=1..30); # _Alois P. Heinz_, Jul 07 2016
%t nn=20;Drop[Range[0,nn]!CoefficientList[Series[Sum[Integrate[x^(k-1)/(k-1)! Exp[Exp[x]-Sum[x^i/i!,{i,0,k}]],x],{k,1,nn}],{x,0,nn}],x],1]
%t (* Second program: *)
%t b[n_, t_] := b[n, t] = If[n==0, 1, Sum[Binomial[n-1, i-1]*b[n-i, If[t==1, i + 1, t]], {i, t, n}]]; a[n_] := If[n==0, 0, b[n, 1]]; Table[a[n], {n, 1, 30}] (* _Jean-François Alcover_, Feb 08 2017, after _Alois P. Heinz_ *)
%Y Cf. A224219.
%K nonn
%O 1,3
%A _Geoffrey Critzer_, Apr 01 2013