Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #54 Mar 02 2019 23:33:09
%S 1,3,8,42,144,1440,5760,75600,524160,6531840,43545600,1117670400,
%T 6706022400,149448499200,2092278988800,40537905408000,376610217984000,
%U 13871809695744000,128047474114560000,5109094217170944000
%N a(n) = (n-1)! * sigma(n).
%C sigma(n) = A000203(n) is the sum of the divisors of n.
%C Number of labeled regular octopi (or octopuses, cycles of ordered sets all the same size).
%C Left edge of triangle in A008298.
%D F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 56 (1.4.67).
%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 159, #10, A(n,1).
%H T. D. Noe, <a href="/A038048/b038048.txt">Table of n, a(n) for n = 1..100</a>
%H Xiaojun Liu, Motohico Mulase, Adam Sorkin, <a href="http://arxiv.org/abs/1304.0015">Quantum curves for simple Hurwitz numbers of an arbitrary base curve</a>, arXiv:1304.0015 [math.AG], 2013.
%H H. Ochiai, <a href="http://arXiv.org/abs/math-ph/9909023">Counting functions for branched covers of elliptic curves and quasi-modular forms</a>, arXiv:math-ph/9909023, 1999.
%F a(n) = Sum_{d|n} n!/d. - _Amarnath Murthy_, Jul 24 2005
%F a(p) = (p+1)*(p-1)! if p is a prime. - _Amarnath Murthy_, Jul 24 2005
%F E.g.f.: log(f(x)), where f(x) = o.g.f. for partitions (A000041), Product_{k>=1} 1/(1 - x^k). - _N. J. A. Sloane_
%F E.g.f.: Sum_{k>0} x^k/(k*(1-x^k)). - _Vladeta Jovovic_, Mar 27 2005
%F a(n) = A000142(n-1)*A000203(n). - _Omar E. Pol_, Feb 26 2014
%e a(6) = 5! * (1 + 2 + 3 + 6) = 1440 = 6! * (1 + 1/2 + 1/3 + 1/6).
%p a := n -> n!*add(1/j, j=numtheory:-divisors(n)): seq(a(n), n=1..23); # _Emeric Deutsch_, Jul 24 2005
%t a[n_] := (n-1)!*DivisorSigma[1, n]; Table[a[n], {n, 20}] (* _Jean-François Alcover_, Mar 23 2011 *)
%o (PARI) a(n)=(n-1)!*sigma(n) \\ _Charles R Greathouse IV_, Mar 09 2014
%o (Sage)
%o A038048 = lambda n: factorial(n-1)*sigma(n,1)
%o [A038048(n) for n in (1..20)] # _Peter Luschny_, Jan 19 2016
%Y Cf. A000203, A057625, A058892, A110373, A110374.
%K nonn,nice,easy
%O 1,2
%A _Christian G. Bower_
%E More terms from _Emeric Deutsch_, Jul 24 2005
%E Edited by _N. J. A. Sloane_, May 12 2008 at the suggestion of _Joerg Arndt_