login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A319933
A(n, k) = [x^k] DedekindEta(x)^n, square array read by descending antidiagonals, A(n, k) for n >= 0 and k >= 0.
4
1, 0, 1, 0, -1, 1, 0, -1, -2, 1, 0, 0, -1, -3, 1, 0, 0, 2, 0, -4, 1, 0, 1, 1, 5, 2, -5, 1, 0, 0, 2, 0, 8, 5, -6, 1, 0, 1, -2, 0, -5, 10, 9, -7, 1, 0, 0, 0, -7, -4, -15, 10, 14, -8, 1, 0, 0, -2, 0, -10, -6, -30, 7, 20, -9, 1, 0, 0, -2, 0, 8, -5, 0, -49, 0, 27, -10, 1
OFFSET
0,9
COMMENTS
The columns are generated by polynomials whose coefficients constitute the triangle of signed D'Arcais numbers A078521 when multiplied with n!.
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fifth ed., Clarendon Press, Oxford, 2003.
LINKS
M. Boylan, Exceptional congruences for the coefficients of certain eta-product newforms, J. Number Theory 98 (2003), no. 2, 377-389. MR1955423 (2003k:11071)
Steven R. Finch, Powers of Euler's q-Series, arXiv:math/0701251 [math.NT], 2007.
Vaclav Kotesovec, The integration of q-series
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
M. Newman, A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216. [Annotated scanned copy]
Tim Silverman, Counting Cliques in Finite Distant Graphs, arXiv preprint arXiv:1612.08085 [math.CO], 2016.
EXAMPLE
[ 0] 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... A000007
[ 1] 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, ... A010815
[ 2] 1, -2, -1, 2, 1, 2, -2, 0, -2, -2, ... A002107
[ 3] 1, -3, 0, 5, 0, 0, -7, 0, 0, 0, ... A010816
[ 4] 1, -4, 2, 8, -5, -4, -10, 8, 9, 0, ... A000727
[ 5] 1, -5, 5, 10, -15, -6, -5, 25, 15, -20, ... A000728
[ 6] 1, -6, 9, 10, -30, 0, 11, 42, 0, -70, ... A000729
[ 7] 1, -7, 14, 7, -49, 21, 35, 41, -49, -133, ... A000730
[ 8] 1, -8, 20, 0, -70, 64, 56, 0, -125, -160, ... A000731
[ 9] 1, -9, 27, -12, -90, 135, 54, -99, -189, -85, ... A010817
[10] 1, -10, 35, -30, -105, 238, 0, -260, -165, 140, ... A010818
A001489, v , A167541, v , A319931, v , diagonal: A008705
MAPLE
DedekindEta := (x, n) -> mul(1-x^j, j=1..n):
A319933row := proc(n, len) series(DedekindEta(x, len)^n, x, len+1):
seq(coeff(%, x, j), j=0..len-1) end:
seq(print([n], A319933row(n, 10)), n=0..10);
MATHEMATICA
eta[x_, n_] := Product[1 - x^j, {j, 1, n}];
A[n_, k_] := SeriesCoefficient[eta[x, k]^n, {x, 0, k}];
Table[A[n - k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 10 2018 *)
PROG
(Sage)
from sage.modular.etaproducts import qexp_eta
def A319933row(n, len):
return (qexp_eta(ZZ['q'], len+4)^n).list()[:len]
for n in (0..10):
print(A319933row(n, 10))
(Julia) # DedekindEta is defined in A000594
for n in 0:10
DedekindEta(10, n) |> println
end
CROSSREFS
Transpose of A286354.
Cf. A078521, A319574 (JacobiTheta3).
Sequence in context: A326676 A076833 A071676 * A335964 A301570 A301567
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Oct 02 2018
STATUS
approved