OFFSET
0,9
COMMENTS
The columns are generated by polynomials whose coefficients constitute the triangle of signed D'Arcais numbers A078521 when multiplied with n!.
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fifth ed., Clarendon Press, Oxford, 2003.
LINKS
M. Boylan, Exceptional congruences for the coefficients of certain eta-product newforms, J. Number Theory 98 (2003), no. 2, 377-389. MR1955423 (2003k:11071)
Steven R. Finch, Powers of Euler's q-Series, arXiv:math/0701251 [math.NT], 2007.
Vaclav Kotesovec, The integration of q-series
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
M. Newman, A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216. [Annotated scanned copy]
Tim Silverman, Counting Cliques in Finite Distant Graphs, arXiv preprint arXiv:1612.08085 [math.CO], 2016.
Michael Somos, Introduction to Ramanujan theta functions
EXAMPLE
[ 0] 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... A000007
[ 1] 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, ... A010815
[ 2] 1, -2, -1, 2, 1, 2, -2, 0, -2, -2, ... A002107
[ 3] 1, -3, 0, 5, 0, 0, -7, 0, 0, 0, ... A010816
[ 4] 1, -4, 2, 8, -5, -4, -10, 8, 9, 0, ... A000727
[ 5] 1, -5, 5, 10, -15, -6, -5, 25, 15, -20, ... A000728
[ 6] 1, -6, 9, 10, -30, 0, 11, 42, 0, -70, ... A000729
[ 7] 1, -7, 14, 7, -49, 21, 35, 41, -49, -133, ... A000730
[ 8] 1, -8, 20, 0, -70, 64, 56, 0, -125, -160, ... A000731
[ 9] 1, -9, 27, -12, -90, 135, 54, -99, -189, -85, ... A010817
[10] 1, -10, 35, -30, -105, 238, 0, -260, -165, 140, ... A010818
MAPLE
DedekindEta := (x, n) -> mul(1-x^j, j=1..n):
A319933row := proc(n, len) series(DedekindEta(x, len)^n, x, len+1):
seq(coeff(%, x, j), j=0..len-1) end:
seq(print([n], A319933row(n, 10)), n=0..10);
MATHEMATICA
eta[x_, n_] := Product[1 - x^j, {j, 1, n}];
A[n_, k_] := SeriesCoefficient[eta[x, k]^n, {x, 0, k}];
Table[A[n - k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 10 2018 *)
PROG
(Sage)
from sage.modular.etaproducts import qexp_eta
def A319933row(n, len):
return (qexp_eta(ZZ['q'], len+4)^n).list()[:len]
for n in (0..10):
print(A319933row(n, 10))
(Julia) # DedekindEta is defined in A000594
for n in 0:10
DedekindEta(10, n) |> println
end
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Oct 02 2018
STATUS
approved