OFFSET
0,7
COMMENTS
Number of partitions of n into distinct parts congruent to 0 or 1 mod 5.
FORMULA
G.f.: Product_{k>=2} (1 + x^A008851(k)).
a(n) ~ exp(Pi*sqrt(2*n/15)) / (2^(29/20) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Mar 24 2018
EXAMPLE
a(11) = 3 because we have [11], [10, 1] and [6, 5].
MATHEMATICA
nmax = 74; CoefficientList[Series[Product[(1 + x^(5 k)) (1 + x^(5 k - 4)), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 74; CoefficientList[Series[x^4 QPochhammer[-1, x^5] QPochhammer[-x^(-4), x^5]/(2 (1 + x^4)), {x, 0, nmax}], x]
nmax = 74; CoefficientList[Series[Product[(1 + Boole[MemberQ[{0, 1}, Mod[k, 5]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 23 2018
STATUS
approved