login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301566
a(n) = Sum_{k=1..n-1} k*A088459(n, k).
1
0, 2, 15, 82, 405, 1891, 8554, 37850, 164985, 710893, 3036726, 12880847, 54331550, 228089538, 953811972, 3975120810, 16519242465, 68474376025, 283211458750, 1169062910873, 4817380232522, 19819870885230, 81429323786460, 334120527783367, 1369374666890230
OFFSET
1,2
COMMENTS
a(n)/binomial(2*n-1,n-1) gives the mean distance of the n-odd graph.
Sum can be given in closed form involving four terms each consisting of a product of binomials and 3F2's.
LINKS
Eric Weisstein's World of Mathematics, Mean Distance
Eric Weisstein's World of Mathematics, Odd Graph
FORMULA
a(n) = 2*A136328(n)/binomial(2*n-1,n-1). - Andrew Howroyd, Mar 24 2018
MATHEMATICA
Table[Sum[k Binomial[n, Ceiling[k/2]] Binomial[n - 1, Floor[k/2]], {k, n - 1}], {n, 20}]
PROG
(PARI) T(n, k) = binomial(n, ceil(k/2))*binomial(n-1, k\2);
a(n) = sum(k=1, n-1, k*T(n, k)); \\ Altug Alkan, Mar 23 2018
CROSSREFS
Sequence in context: A268735 A215705 A368783 * A109725 A057152 A002740
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Mar 23 2018
STATUS
approved