Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Mar 24 2018 13:56:29
%S 0,2,15,82,405,1891,8554,37850,164985,710893,3036726,12880847,
%T 54331550,228089538,953811972,3975120810,16519242465,68474376025,
%U 283211458750,1169062910873,4817380232522,19819870885230,81429323786460,334120527783367,1369374666890230
%N a(n) = Sum_{k=1..n-1} k*A088459(n, k).
%C a(n)/binomial(2*n-1,n-1) gives the mean distance of the n-odd graph.
%C Sum can be given in closed form involving four terms each consisting of a product of binomials and 3F2's.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MeanDistance.html">Mean Distance</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/OddGraph.html">Odd Graph</a>
%F a(n) = 2*A136328(n)/binomial(2*n-1,n-1). - _Andrew Howroyd_, Mar 24 2018
%t Table[Sum[k Binomial[n, Ceiling[k/2]] Binomial[n - 1, Floor[k/2]], {k, n - 1}], {n, 20}]
%o (PARI) T(n, k) = binomial(n, ceil(k/2))*binomial(n-1, k\2);
%o a(n) = sum(k=1, n-1, k*T(n,k)); \\ _Altug Alkan_, Mar 23 2018
%Y Cf. A088459, A136328.
%K nonn
%O 1,2
%A _Eric W. Weisstein_, Mar 23 2018