login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002107 Expansion of Product_{k>=1} (1 - x^k)^2.
(Formerly M0091 N0028)
22
1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, 0, 0, 2, 3, -2, 2, 0, 0, -2, -2, 0, 0, -2, -1, 0, 2, 2, -2, 2, 1, 2, 0, 2, -2, -2, 2, 0, -2, 0, -4, 0, 0, 0, 1, -2, 0, 0, 2, 0, 2, 2, 1, -2, 0, 2, 2, 0, 0, -2, 0, -2, 0, -2, 2, 0, -4, 0, 0, -2, -1, 2, 0, 2, 0, 0, 0, -2 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Number of partitions of n into an even number of distinct parts minus number of partitions of n into an odd number of distinct parts, with 2 types of each part. E.g., for n=4, we consider k and k* to be different versions of k and so we have 4, 4*, 31, 31*, 3*1, 3*1*, 22*, 211*, 2*11*. The even partitions number 5 and the odd partitions number 4, so a(4)=5-4=1. - Jon Perry, Apr 04 2004
Also, number of partitions of n into parts of -2 different kinds (based upon formal analogy). - Michele Dondi (blazar(AT)lcm.mi.infn.it), Jun 29 2004
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 68 of the 74 eta-quotients listed in Table I of Martin (1996).
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
G. E. Andrews, Advanced problems 6562, Amer. Math. Monthly 94, 1987.
M. Boylan, Exceptional congruences for the coefficients of certain eta-product newforms, J. Number Theory 98 (2003), no. 2, 377-389. MR1955423 (2003k:11071)
S. Cooper, M. D. Hirschhorn and R. Lewis, Powers of Euler's Product and Related Identities, The Ramanujan Journal, Vol. 4 (2), 137-155 (2000).
S. R. Finch, Powers of Euler's q-Series, arXiv:math/0701251 [math.NT], 2007.
J. W. L. Glaisher, On the square of Euler's series, Proc. London Math. Soc., 21 (1889), 182-194.
J. T. Joichi, Hecke-Rogers, Andrews identities; combinatorial proofs, Discrete Mathematics, Vol. 84, Issue 3, 1990, pp. 255-259.
Victor G. Kac and Dale H. Peterson, Infinite-Dimensional Lie Algebras, Theta Functions and Modular Forms, Advances in Mathematics (1984), 53. 125-264, see page 261, (5.19).
M. Koike, On McKay's conjecture, Nagoya Math. J., 95 (1984), 85-89.
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
Tim Silverman, Counting Cliques in Finite Distant Graphs, arXiv preprint arXiv:1612.08085 [math.CO], 2016.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/12) * eta(q)^2 in powers of q. - Michael Somos, Mar 06 2012
Euler transform of period 1 sequence [ -2, ...]. - Michael Somos, Mar 06 2012
a(n) = b(12*n + 1) where b(n) is multiplicative and b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p == 7, 11 (mod 12), b(p^e) = (-1)^(e/2) * (1 + (-1)^e) / 2 if p == 5 (mod 12), b(p^e) = (e + 1) * (-1)^(e*x) if p == 1 (mod 12) where p = x^2 + 9*y^2. - Michael Somos, Sep 16 2006
Convolution inverse of A000712.
a(0) = 1, a(n) = 1/n*Sum{k = 0..n-1} -2*a(k)*sigma_1(n-k)). - Joerg Arndt, Feb 05 2011
Expansion of f(-x)^2 in powers of x where f() is a Ramanujan theta function. - Michael Somos, May 17 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 12 (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, May 17 2015
a(n) = Sum_{k=0..n} A010815(k)*A010815(n-k); self convolution of A010815. - Gevorg Hmayakyan, Sep 18 2016
G.f.: Sum_{m, n in Z, n >= 2*|m|} (-1)^n * x^((3*(2*n + 1)^2 - (6*m + 1)^2)/24). - Seiichi Manyama, Oct 01 2016
G.f.: exp(-2*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
From Peter Bala, Jan 02 2021: (Start)
For prime p congruent to 5, 7 or 11 (mod 12), a(n*p^2 + (p^2 - 1)/12) = e*a(n), where e = 1 if p == 7 or 11 (mod 12) and e = -1 if p == 5 (mod 12).
If n and p are coprime then a(n*p + (p^2 - 1)/12) = 0. See Cooper et al., Theorem 1. (End)
With the convention that a(n) = 0 for n < 0 we have the recurrence a(n) = A010816(n) + Sum_{k a nonzero integer} (-1)^(k+1)*a(n - k*(3*k-1)/2), where A010816(n) = (-1)^m*(2*m+1) if n = m*(m + 1)/2, with m positive, is a triangular number else equals 0. For example, n = 10 = (4*5)/2 is a triangular number, A010816(10) = 9, and so a(10) = 9 + a(9) + a(8) - a(5) - a(3) = 9 - 2 - 2 - 2 - 2 = 1. - Peter Bala, Apr 06 2022
EXAMPLE
G.f. = 1 - 2*x - x^2 + 2*x^3 + x^4 + 2*x^5 - 2*x^6 - 2*x^8 - 2*x^9 + x^10 + ...
G.f. = q - 2*q^13 - q^25 + 2*q^37 + q^49 + 2*q^61 - 2*q^73 - 2*q^97 - 2*q^109 + ...
MAPLE
A010816 := proc (n); if frac(sqrt(8*n+1)) = 0 then (-1)^((1/2)*isqrt(8*n+1)-1/2)*isqrt(8*n+1) else 0 end if; end proc:
N := 10:
a := proc (n) option remember; if n < 0 then 0 else A010816(n) + add( (-1)^(k+1)*a(n - (1/2)*k*(3*k-1) ), k = -N..-1) + add( (-1)^(k+1)*a(n - (1/2)*k*(3*k-1) ), k = 1..N) end if; end proc:
seq(a(n), n = 0..100); # Peter Bala, Apr 06 2022
MATHEMATICA
terms = 78; Clear[s]; s[n_] := s[n] = Product[(1 - x^k)^2, {k, 1, n}] // Expand // CoefficientList[#, x]& // Take[#, terms]&; s[n = 10]; s[n = 2*n]; While[s[n] != s[n - 1], n = 2*n]; A002107 = s[n] (* Jean-François Alcover, Jan 17 2013 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^2, {x, 0, n}]; (* Michael Somos, Jan 31 2015 *)
a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, n}]^2, {x, 0, n}]; (* Michael Somos, Jan 31 2015 *)
PROG
(PARI) {a(n) = my(A, p, e, x); if( n<0, 0, n = 12*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, 0, p%12>1, if( e%2, 0, (-1)^((p%12==5) * e/2)), for( i=1, sqrtint(p\9), if( issquare(p - 9*i^2), x=i; break)); (e + 1) * (-1)^(e*x))))}; /* Michael Somos, Aug 30 2006 */
(PARI) {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n))^2, n))}; /* Michael Somos, Aug 30 2006 */
(PARI) Vec(eta(x)^2) \\ Charles R Greathouse IV, Apr 22 2016
(Magma) Basis( CuspForms( Gamma1(144), 1), 926) [1]; /* Michael Somos, May 17 2015 */
(Julia) # DedekindEta is defined in A000594.
A002107List(len) = DedekindEta(len, 2)
A002107List(78) |> println # Peter Luschny, Mar 09 2018
CROSSREFS
Cf. A000712 (reciprocal of g.f.), A010815, A010816, A258406.
Powers of Euler's product: A000594, A000727 - A000731, A000735, A000739, A010815 - A010840.
Sequence in context: A359509 A335665 A369239 * A208845 A232506 A133099
KEYWORD
sign,nice
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 01:57 EDT 2024. Contains 370952 sequences. (Running on oeis4.)