login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232506
Expansion of (eta(q) * eta(q^23))^2 in powers of q.
2
1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, 0, 0, 2, 3, -2, 2, 0, 0, -2, -2, 0, 0, -4, 3, 2, -2, 0, -6, 6, 1, 6, 4, 0, -2, -2, -2, -6, 2, -4, -4, 0, 4, 4, 1, -2, 3, 4, 3, -6, -3, 4, -1, -4, -2, 4, -3, 4, 4, -8, -3, 4, -2, 6, 2, 2, -2, -2, 4, 2, -4, -4, 2, -2, 2, -8
OFFSET
2,2
LINKS
John F. R. Duncan, Michael J. Griffin and Ken Ono, Proof of the Umbral Moonshine Conjecture, arXiv:1503.01472, 2015. See Eq. (B.31).
FORMULA
Expansion of a level 2 Gamma0(23) cusp form in powers of q with a(1) = 0, a(2) = 1.
Euler transform of period 23 sequence [ -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -4, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u*w)^2 * (u + 4*w)^2 + v^2 * (v*v - 2*u*w)^2 - 2*u*w * (u + 2*v) * (v + 2*w) * (v*v + 4*u*w).
If b(n) = A253193(n) - (1 + sqrt(5))/2 * a(n) then b() is multiplicative with b(23^e) = 1, otherwise b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)).
G.f. is a period 1 Fourier series which satisfies f(-1 / (23 t)) = 23 (t/i)^2 f(t) where q = exp(2 Pi i t).
G.f.: x^2 * Product_{k>0} ((1 - x^k) * (1 - x^(23*k)))^2.
Convolution square of A030199.
EXAMPLE
G.f. = q^2 - 2*q^3 - q^4 + 2*q^5 + q^6 + 2*q^7 - 2*q^8 - 2*q^10 - 2*q^11 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q^2 (QPochhammer[ q] QPochhammer[ q^23])^2, {q, 0, n}];
PROG
(PARI) {a(n) = local(A); if( n<2, 0, n -= 2; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^23 + A))^2, n))};
(Sage) CuspForms( Gamma0(23), 2, prec=78).1;
(Magma) Basis( CuspForms( Gamma0(23), 2), 78) [2];
CROSSREFS
Sequence in context: A369239 A002107 A208845 * A133099 A006571 A243906
KEYWORD
sign
AUTHOR
Michael Somos, Nov 25 2013
STATUS
approved