Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 08 2022 08:46:06
%S 1,-2,-1,2,1,2,-2,0,-2,-2,1,0,0,2,3,-2,2,0,0,-2,-2,0,0,-4,3,2,-2,0,-6,
%T 6,1,6,4,0,-2,-2,-2,-6,2,-4,-4,0,4,4,1,-2,3,4,3,-6,-3,4,-1,-4,-2,4,-3,
%U 4,4,-8,-3,4,-2,6,2,2,-2,-2,4,2,-4,-4,2,-2,2,-8
%N Expansion of (eta(q) * eta(q^23))^2 in powers of q.
%H G. C. Greubel, <a href="/A232506/b232506.txt">Table of n, a(n) for n = 2..1000</a>
%H John F. R. Duncan, Michael J. Griffin and Ken Ono, <a href="http://arxiv.org/abs/1503.01472">Proof of the Umbral Moonshine Conjecture</a>, arXiv:1503.01472, 2015. See Eq. (B.31).
%F Expansion of a level 2 Gamma0(23) cusp form in powers of q with a(1) = 0, a(2) = 1.
%F Euler transform of period 23 sequence [ -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -4, ...].
%F G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u*w)^2 * (u + 4*w)^2 + v^2 * (v*v - 2*u*w)^2 - 2*u*w * (u + 2*v) * (v + 2*w) * (v*v + 4*u*w).
%F If b(n) = A253193(n) - (1 + sqrt(5))/2 * a(n) then b() is multiplicative with b(23^e) = 1, otherwise b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)).
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (23 t)) = 23 (t/i)^2 f(t) where q = exp(2 Pi i t).
%F G.f.: x^2 * Product_{k>0} ((1 - x^k) * (1 - x^(23*k)))^2.
%F Convolution square of A030199.
%e G.f. = q^2 - 2*q^3 - q^4 + 2*q^5 + q^6 + 2*q^7 - 2*q^8 - 2*q^10 - 2*q^11 + ...
%t a[ n_] := SeriesCoefficient[ q^2 (QPochhammer[ q] QPochhammer[ q^23])^2, {q, 0, n}];
%o (PARI) {a(n) = local(A); if( n<2, 0, n -= 2; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^23 + A))^2, n))};
%o (Sage) CuspForms( Gamma0(23), 2, prec=78).1;
%o (Magma) Basis( CuspForms( Gamma0(23), 2), 78) [2];
%Y Cf. A030199, A253193.
%K sign
%O 2,2
%A _Michael Somos_, Nov 25 2013