login
A319930
a(n) = (1/24)*n*(n - 1)*(n - 3)*(n - 14).
3
0, 0, 1, 0, -5, -15, -30, -49, -70, -90, -105, -110, -99, -65, 0, 105, 260, 476, 765, 1140, 1615, 2205, 2926, 3795, 4830, 6050, 7475, 9126, 11025, 13195, 15660, 18445, 21576, 25080, 28985, 33320, 38115, 43401, 49210, 55575, 62530, 70110, 78351, 87290, 96965
OFFSET
0,5
FORMULA
a(n) = [x^4] DedekindEta(x)^n.
a(n) = A319933(n, 4).
MAPLE
a := n -> (1/24)*n*(n-1)*(n-3)*(n-14):
seq(a(n), n=0..44);
MATHEMATICA
Table[(n(n-1)(n-3)(n-14))/24, {n, 0, 70}] (* Harvey P. Dale, Apr 29 2022 *)
CROSSREFS
Cf. A000012 (m=0), A001489 (m=1), A080956 (m=2), A167541 (m=3), this sequence (m=4), A319931 (m=5), A319932 (m=6).
Cf. A319933.
Sequence in context: A285630 A078905 A059160 * A357690 A341984 A028895
KEYWORD
sign,easy
AUTHOR
Peter Luschny, Oct 02 2018
STATUS
approved