login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285630
Expansion of r(q)^5 / r(q^5) in powers of q where r() is the Rogers-Ramanujan continued fraction.
5
1, -5, 15, -30, 40, -25, -35, 140, -250, 285, -150, -210, 740, -1230, 1330, -675, -880, 3015, -4830, 5025, -2450, -3135, 10380, -16180, 16450, -7875, -9785, 31850, -48720, 48600, -22800, -27985, 89465, -134760, 132530, -61400, -74205, 234515, -349000, 339145
OFFSET
0,2
COMMENTS
G.f. A(q) satisfies: A(q) = u^5 / v = (v^4 - 3*v^3 + 4*v^2 - 2*v + 1) / (v^4 + 2*v^3 + 4*v^2 + 3*v + 1), where u = r(q) and v = r(q^5).
LINKS
Bruce C. Berndt, Heng Huat Chan, Sen-Shan Huang, Soon-Yi Kang, Jaebum Sohn, and Seung Hwan Son, The Rogers-Ramanujan continued fraction, Journal of Computational and Applied Mathematics, Vol. 105, No. 1-2 (1999), 9-24.
CROSSREFS
r(q)^k / r(q^k): A285349 (k=2), A285628 (k=3), A285629 (k=4), this sequence (k=5).
Cf. A078905 (u^5), A229793 (1 / u^5), A285585, A285587.
Sequence in context: A212871 A188350 A268222 * A078905 A059160 A319930
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 22 2017
STATUS
approved