Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Apr 23 2017 10:09:50
%S 1,-5,15,-30,40,-25,-35,140,-250,285,-150,-210,740,-1230,1330,-675,
%T -880,3015,-4830,5025,-2450,-3135,10380,-16180,16450,-7875,-9785,
%U 31850,-48720,48600,-22800,-27985,89465,-134760,132530,-61400,-74205,234515,-349000,339145
%N Expansion of r(q)^5 / r(q^5) in powers of q where r() is the Rogers-Ramanujan continued fraction.
%C G.f. A(q) satisfies: A(q) = u^5 / v = (v^4 - 3*v^3 + 4*v^2 - 2*v + 1) / (v^4 + 2*v^3 + 4*v^2 + 3*v + 1), where u = r(q) and v = r(q^5).
%H Seiichi Manyama, <a href="/A285630/b285630.txt">Table of n, a(n) for n = 0..10000</a>
%H Bruce C. Berndt, Heng Huat Chan, Sen-Shan Huang, Soon-Yi Kang, Jaebum Sohn, and Seung Hwan Son, <a href="http://doi.org/10.1016/S0377-0427(99)00033-3">The Rogers-Ramanujan continued fraction</a>, Journal of Computational and Applied Mathematics, Vol. 105, No. 1-2 (1999), 9-24.
%Y r(q)^k / r(q^k): A285349 (k=2), A285628 (k=3), A285629 (k=4), this sequence (k=5).
%Y Cf. A078905 (u^5), A229793 (1 / u^5), A285585, A285587.
%K sign
%O 0,2
%A _Seiichi Manyama_, Apr 22 2017