login
A285349
Expansion of r(q)^2 / r(q^2) in powers of q where r() is the Rogers-Ramanujan continued fraction.
7
1, -2, 4, -4, 2, 2, -8, 12, -12, 6, 8, -24, 36, -36, 16, 20, -62, 92, -88, 40, 46, -144, 208, -196, 88, 102, -308, 440, -412, 180, 208, -624, 884, -816, 356, 404, -1206, 1692, -1552, 672, 760, -2244, 3128, -2852, 1224, 1378, -4048, 5612, -5084, 2174, 2428, -7104, 9796, -8836, 3760
OFFSET
0,2
COMMENTS
Let k(q) = r(q) * r(q^2)^2.
G.f. satisfies: A(q) = (1 - k(q))/(1 + k(q)).
And r(q)^5 = k(q) * A(q)^2.
FORMULA
a(n) = A138518(n) + A285348(n) for n>0 (conjectured). - Thomas Baruchel, May 14 2018
CROSSREFS
r(q)^k / r(q^k): this sequence (k=2), A285628 (k=3), A285629 (k=4), A285630 (k=5).
Cf. A007325, A078905 (r(q)^5), A112274 (k(q)), A285348.
Sequence in context: A156346 A156283 A126123 * A256066 A096832 A016588
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 17 2017
STATUS
approved