OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of ( (eta(q) / eta(q^5))^2 * eta(q^10) / eta(q^2) )^2 in powers of q.
Euler transform of period 10 sequence [ -4, -2, -4, -2, 0, -2, -4, -2, -4, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (v^2 - u) * (u - 1) - 4 * u * (v - 1).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u - v)^4 - u * (u - 1) * (u - 5) * v * (v - 1) * (v - 5).
G.f. is a period 1 Fourier series which satisfies f(-1 / (10 t)) = 5 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A138519.
G.f.: (Product_{k>0} P(10, x^k) / P(5, x^k))^2 where P(n, x) is the n-th cyclotomic polynomial.
a(n) = -4 * A095813(n) unless n=0.
EXAMPLE
G.f. = 1 - 4*q + 4*q^2 + 4*q^4 - 4*q^5 - 16*q^6 + 16*q^7 + 4*q^8 + 12*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, q] / EllipticTheta[ 4, 0, q^5])^2, {q, 0, n}]; (* Michael Somos, Sep 16 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ((eta(x + A) / eta(x^5 + A))^2 * eta(x^10 + A) / eta(x^2 + A))^2, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Mar 23 2008
STATUS
approved