login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138518
Expansion of (phi(-q) / phi(-q^5))^2 in powers of q where phi() is a Ramanujan theta function.
6
1, -4, 4, 0, 4, -4, -16, 16, 4, 12, -12, -48, 48, 8, 32, -32, -124, 120, 20, 80, -76, -288, 272, 48, 176, -164, -616, 576, 96, 360, -336, -1248, 1156, 192, 712, -656, -2412, 2216, 368, 1344, -1228, -4488, 4096, 672, 2448, -2228, -8096, 7344, 1200, 4348, -3932
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of ( (eta(q) / eta(q^5))^2 * eta(q^10) / eta(q^2) )^2 in powers of q.
Euler transform of period 10 sequence [ -4, -2, -4, -2, 0, -2, -4, -2, -4, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (v^2 - u) * (u - 1) - 4 * u * (v - 1).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u - v)^4 - u * (u - 1) * (u - 5) * v * (v - 1) * (v - 5).
G.f. is a period 1 Fourier series which satisfies f(-1 / (10 t)) = 5 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A138519.
G.f.: (Product_{k>0} P(10, x^k) / P(5, x^k))^2 where P(n, x) is the n-th cyclotomic polynomial.
a(n) = -4 * A095813(n) unless n=0.
Convolution inverse of A138517. Convolution square of A138527.
EXAMPLE
G.f. = 1 - 4*q + 4*q^2 + 4*q^4 - 4*q^5 - 16*q^6 + 16*q^7 + 4*q^8 + 12*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, q] / EllipticTheta[ 4, 0, q^5])^2, {q, 0, n}]; (* Michael Somos, Sep 16 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ((eta(x + A) / eta(x^5 + A))^2 * eta(x^10 + A) / eta(x^2 + A))^2, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Mar 23 2008
STATUS
approved