login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095813
Expansion of q * chi(-q) / chi(-q^5)^5 in powers of q where chi() is a Ramanujan theta function.
6
1, -1, 0, -1, 1, 4, -4, -1, -3, 3, 12, -12, -2, -8, 8, 31, -30, -5, -20, 19, 72, -68, -12, -44, 41, 154, -144, -24, -90, 84, 312, -289, -48, -178, 164, 603, -554, -92, -336, 307, 1122, -1024, -168, -612, 557, 2024, -1836, -300, -1087, 983, 3552, -3206, -522, -1880, 1692, 6088, -5472, -886, -3180
OFFSET
1,6
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (1 - (phi(-q) / phi(-q^5))^2) / 4 in powers of q where phi() is a Ramanujan theta function.
Expansion of (eta(q) * eta(q^10)^5) / (eta(q^2) * eta(q^5)^5) in powers of q.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v + 2*u*v + 4*u*v^2.
G.f. A(x) satisfies A(x^2) = -A(x) * A(-x).
Euler transform of period 10 sequence [ -1, 0, -1, 0, 4, 0, -1, 0, -1, 0, ...].
G.f.: x * (Product_{k>=1} ((1 - x^k) * (1-x^(10*k))^5) / ((1 - x^(2*k)) * (1 - x^(5*k))^5)).
a(n) = A138522(n) unless n = 0. Convolution inverse is A132980.
Empirical: Sum_{n>=1} a(n)/exp(Pi*n) = -13/8 - (5/8)*sqrt(5) + (5/8)*sqrt(10 + 6*sqrt(5)). - Simon Plouffe, Mar 01 2021
EXAMPLE
q - q^2 - q^4 + q^5 + 4*q^6 - 4*q^7 - q^8 - 3*q^9 + 3*q^10 + 12*q^11 + ...
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^10 + A)^5 / (eta(x^2 + A) * eta(x^5 + A)^5), n))}
CROSSREFS
Sequence in context: A362329 A292434 A138522 * A010656 A350674 A321591
KEYWORD
sign
AUTHOR
Michael Somos, Jun 07 2004
STATUS
approved