login
A350674
Irregular table read by rows; the n-th row contains, in weakly decreasing order, the positive squares summing to n as obtained by the greedy algorithm.
3
1, 1, 1, 1, 1, 1, 4, 4, 1, 4, 1, 1, 4, 1, 1, 1, 4, 4, 9, 9, 1, 9, 1, 1, 9, 1, 1, 1, 9, 4, 9, 4, 1, 9, 4, 1, 1, 16, 16, 1, 16, 1, 1, 16, 1, 1, 1, 16, 4, 16, 4, 1, 16, 4, 1, 1, 16, 4, 1, 1, 1, 16, 4, 4, 25, 25, 1, 25, 1, 1, 25, 1, 1, 1, 25, 4, 25, 4, 1, 25, 4, 1, 1
OFFSET
1,7
COMMENTS
The n-th row has A053610(n) terms.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1733 (rows 1..500)
FORMULA
T(n, 1) = A048760(n).
T(n, A053610(n)) = A350698(n).
EXAMPLE
The first rows are:
1: [1]
2: [1, 1]
3: [1, 1, 1]
4: [4]
5: [4, 1]
6: [4, 1, 1]
7: [4, 1, 1, 1]
8: [4, 4]
9: [9]
10: [9, 1]
11: [9, 1, 1]
12: [9, 1, 1, 1]
13: [9, 4]
14: [9, 4, 1]
15: [9, 4, 1, 1]
16: [16]
PROG
(PARI) row(n, e=2) = { my (g=[], r); while (n, r=sqrtnint(n, e); n-=r^e; g=concat(g, [r^e])); g }
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Rémy Sigrist, Jan 10 2022
STATUS
approved