OFFSET
0,5
COMMENTS
The definition is recursive: a(n) depends on prior terms (a(0), ..., a(n-1)); a(0) = a(1) = 0 correspond to empty sums.
LINKS
Rémy Sigrist, Table of n, a(n) for n = 0..10000
EXAMPLE
The first terms, alongside the corresponding k's, are:
n a(n) k's
-- ---- --------------------------
0 0 {}
1 0 {0}
2 1 {0, 1}
3 1 {0, 1}
4 6 {0, 1, 2, 3}
5 1 {0, 1}
6 11 {0, 1, 2, 3, 5}
7 1 {0, 1}
8 22 {0, 1, 2, 3, 4, 5, 7}
9 13 {0, 1, 4, 8}
10 18 {0, 1, 2, 3, 5, 7}
11 1 {0, 1}
12 39 {0, 1, 2, 3, 5, 7, 10, 11}
MAPLE
a:= proc(n) option remember; add(
`if`(Bits[And](n, a(j))=0, j, 0), j=0..n-1)
end:
seq(a(n), n=0..80); # Alois P. Heinz, Feb 28 2022
PROG
(PARI) for (n=1, #a=vector(63), print1 (a[n]=sum(k=1, n-1, if (bitand(a[k], n-1)==0, k-1, 0))", "))
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Rémy Sigrist, Feb 25 2022
STATUS
approved