login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350677
a(n) is the sum of the numbers k < n such that a(k) AND n = 0 (where AND denotes the bitwise AND operator).
3
0, 0, 1, 1, 6, 1, 11, 1, 22, 13, 18, 1, 39, 11, 29, 1, 88, 5, 70, 1, 82, 1, 84, 1, 158, 23, 124, 1, 134, 1, 163, 1, 428, 151, 272, 73, 328, 117, 315, 87, 452, 185, 307, 97, 258, 109, 228, 35, 444, 171, 331, 77, 378, 81, 265, 37, 345, 135, 251, 41, 238, 45, 194
OFFSET
0,5
COMMENTS
The definition is recursive: a(n) depends on prior terms (a(0), ..., a(n-1)); a(0) = a(1) = 0 correspond to empty sums.
LINKS
EXAMPLE
The first terms, alongside the corresponding k's, are:
n a(n) k's
-- ---- --------------------------
0 0 {}
1 0 {0}
2 1 {0, 1}
3 1 {0, 1}
4 6 {0, 1, 2, 3}
5 1 {0, 1}
6 11 {0, 1, 2, 3, 5}
7 1 {0, 1}
8 22 {0, 1, 2, 3, 4, 5, 7}
9 13 {0, 1, 4, 8}
10 18 {0, 1, 2, 3, 5, 7}
11 1 {0, 1}
12 39 {0, 1, 2, 3, 5, 7, 10, 11}
MAPLE
a:= proc(n) option remember; add(
`if`(Bits[And](n, a(j))=0, j, 0), j=0..n-1)
end:
seq(a(n), n=0..80); # Alois P. Heinz, Feb 28 2022
PROG
(PARI) for (n=1, #a=vector(63), print1 (a[n]=sum(k=1, n-1, if (bitand(a[k], n-1)==0, k-1, 0))", "))
CROSSREFS
Sequence in context: A259671 A224524 A348982 * A046618 A328898 A216605
KEYWORD
base,nonn
AUTHOR
Rémy Sigrist, Feb 25 2022
STATUS
approved