login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224524
Table read by antidiagonals: T(n,k) is the number of idempotent n X n 0..k matrices of rank 1.
5
1, 1, 6, 1, 10, 27, 1, 14, 69, 108, 1, 18, 123, 404, 405, 1, 22, 195, 892, 2155, 1458, 1, 26, 273, 1716, 5845, 10830, 5103, 1, 30, 375, 2732, 13525, 36042, 52241, 17496, 1, 34, 477, 4324, 24575, 99774, 213647, 244648, 59049, 1, 38, 603, 6060, 44545, 208146, 705215, 1232504, 1120599, 196830
OFFSET
1,3
COMMENTS
Table starts
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
6, 10, 14, 18, 22, 26, 30, 34, 38, ...
27, 69, 123, 195, 273, 375, 477, 603, ...
108, 404, 892, 1716, 2732, 4324, 6060, ...
405, 2155, 5845, 13525, 24575, 44545, ...
1458, 10830, 36042, 99774, 208146, ...
5103, 52241, 213647, 705215, ...
17496, 244648, ...
59049, ...
...
LINKS
EXAMPLE
Some solutions for n=3, k=4:
1 0 0 0 4 4 0 0 0 0 4 2 1 2 1 0 0 0 0 1 0
0 0 0 0 1 1 3 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 2 1 0 0 0 1 4 1 0 0 0
MAPLE
f:= proc(n, k)
local tot, a1, a0, a2, m, u;
tot:= 0;
for a1 from 1 to n do
for a0 from 0 to n-a1 do
a2:= n-a1-a0;
if a0 = 0 then tot:= tot + n!/(a1!*a2!)*a1*(k-1)^a2
elif a2 = 0 then tot:= tot + n!/(a0!*a1!)*a1*(k+1)^a0
else
u:= n!/(a0!*a1!*a2!)*a1;
for m from 2 to k do
tot:= tot + u*((m-1)^a2 - (m-2)^a2)*(floor(k/m)+1)^a0
od
fi
od od;
tot
end proc:
seq(seq(f(i, j-i), i=1..j-1), j=2..20); # Robert Israel, Dec 15 2019
MATHEMATICA
Unprotect[Power]; 0^0 = 1; Protect[Power];
f[n_, k_] := Module[{tot, a1, a0, a2, m, u}, tot = 0; For[a1 = 1, a1 <= n, a1++, For[a0 = 0, a0 <= n - a1, a0++, a2 = n - a1 - a0; Which[a0 == 0, tot = tot + n!/(a1!*a2!)*a1*(k - 1)^a2, a2 == 0, tot = tot + n!/(a0!*a1!)*a1*(k + 1)^a0, True, u = n!/(a0!*a1!*a2!)*a1; For[m = 2, m <= k, m++, tot = tot + u*((m - 1)^a2 - (m - 2)^a2)*(Floor[k/m] + 1)^a0]]]]; tot];
Table[Table[f[i, j - i], {i, 1, j - 1}], {j, 2, 20}] // Flatten (* Jean-François Alcover, Feb 04 2023, after Robert Israel *)
CROSSREFS
Column 1 is A027471(n+1).
Sequence in context: A127142 A224333 A259671 * A348982 A350677 A046618
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 09 2013
STATUS
approved