login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224526
Number of idempotent 4 X 4 0..n matrices of rank 1.
2
108, 404, 892, 1716, 2732, 4324, 6060, 8516, 11308, 14820, 18572, 23668, 28716, 34916, 41836, 49860, 58076, 68164, 78252, 90356, 102988, 116868, 131276, 148564, 165660, 184532, 204604, 226788, 249116, 274900, 300252, 328628, 357868, 389028, 421580, 457924, 493500
OFFSET
1,1
COMMENTS
Row 4 of A224524
LINKS
FORMULA
a(n) = 8*n^3 + 36*n^2 + 60*n + 4 + 24*A024917(n) + 12*A002541(n) + 12*Sum_{m=2..n} floor(n/m)^2. - Robert Israel, Dec 15 2019
EXAMPLE
Some solutions for n=3:
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0
2 0 1 0 2 0 0 1 0 0 0 0 3 3 0 0 0 0 0 0
0 0 0 0 2 0 0 1 0 0 0 0 2 2 0 0 1 0 1 1
MAPLE
F4 := k -> 8*k^3 + 36*k^2 + 24*add(m*floor(k/m), m = 2 .. k) + 12*add(floor(k/m), m = 2 .. k) + 12*add(floor(k/m)^2, m = 2 .. k) + 60*k + 4:
map(F4, [$1..100]); # Robert Israel, Dec 15 2019
MATHEMATICA
Table[8*n^3+36*n^2+60*n+4+24*Sum[k*Floor[n/k], {k, 2, n}]+12*Sum[Floor[(n-k)/k], {k, n-1}]+12*Sum[Floor[(n/k)]^2, {k, 2, n}], {n, 1, 100}] (* Metin Sariyar, Dec 15 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 09 2013
EXTENSIONS
More terms from Metin Sariyar, Dec 15 2019
STATUS
approved