OFFSET
0,3
LINKS
Martin Griffiths, The Zeckendorf Representation of a Beatty-Related Fibonacci Sum, Fibonacci Quart. 53 (2015), no. 3, 230-236.
FORMULA
a(n) = Sum_{k=1..n} A185381(k).
MATHEMATICA
f[n_] := Fibonacci[Floor[GoldenRatio * n]]; Accumulate @ Array[f, 35, 0] (* Amiram Eldar, Jan 11 2022 *)
PROG
(PARI) B(n) = (n+sqrtint(5*n^2))\2; \\ A000201
f(n) = fibonacci(B(n)); \\ A185381
a(n) = sum(k=1, n, f(k));
(Python)
from math import isqrt
from sympy import fibonacci
def A350678(n): return sum(fibonacci((i+isqrt(5*i**2))//2) for i in range(n+1)) # Chai Wah Wu, Jan 11 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Jan 11 2022
STATUS
approved