OFFSET
0,4
COMMENTS
Limit a(n+1)/a(n) = phi^sqrt(5) = phi^phi/(phi-1)^(phi-1) = 2.9329899...
FORMULA
a(n) = floor( binomial(phi*n, n)/(n/phi + 1) ) where phi = (sqrt(5)+1)/2.
EXAMPLE
G.f.: A(x) = 1 + x + c2*x^2 + c3*x^3 + c3*x^4 + c5*x^5 +...
A(x)^phi = 1 + c2*x + c3*x^2 + c4*x^3 + c5*x^4 + c6*x^5 +...
where the coefficients begin:
c2 = 1.6180339887..., c3 = 3.1180339887..., c4 = 6.5994579587...,
c5 = 14.818175608..., c6 = 34.657235589..., c7 = 83.517813823...,
c8 = 205.92186474..., c9 = 516.98843275..., c10 = 1317.122455..., ...;
the floor of the coefficients of A(x) forms this sequence.
PROG
(PARI) {a(n)=local(phi=(1+sqrt(5))/2); if(n<0, 0, floor(binomial(phi*n, n)/((phi-1)*n+1)))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 21 2011
STATUS
approved