login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184786
Let A(x) satisfy: A(x) = 1 + x*A(x)^(phi^2) where phi = (sqrt(5)+1)/2, then this sequence equals the integer part of the coefficients of A(x).
1
1, 1, 2, 8, 35, 147, 654, 3009, 14219, 68605, 336623, 1674517, 8425573, 42806200, 219285459, 1131431170, 5874504011, 30670279153, 160916320637, 847994498527, 4486473924741, 23821682237692, 126897559943046, 677992017255423
OFFSET
0,3
COMMENTS
Limit a(n+1)/a(n) = phi^(phi+2) = (phi+1)^(phi+1)/phi^phi = 5.7032759...
FORMULA
a(n) = floor( binomial(phi^2*n, n)/(phi*n+1) ) where phi = (sqrt(5)+1)/2.
EXAMPLE
G.f.: A(x) = 1 + x + c2*x^2 + c3*x^3 + c3*x^4 + c5*x^5 +...
A(x)^(phi^2) = 1 + c2*x + c3*x^2 + c4*x^3 + c5*x^4 + c6*x^5 +...
where the coefficients begin:
c2 = 2.6180339887..., c3 = 8.9721359549..., c4 = 35.015865823...,
c5 = 147.58190992..., c6 = 654.49854850..., c7 = 3009.5978243...,
c8 = 14219.000049..., c9 = 68605.600329..., c10 = 336623.1131..., ...;
the floor of the coefficients of A(x) forms this sequence.
PROG
(PARI) {a(n)=local(phi=(1+sqrt(5))/2); if(n<0, 0, floor(binomial(phi^2*n, n)/(phi*n+1)))}
CROSSREFS
Cf. A184785.
Sequence in context: A037723 A037618 A326294 * A082759 A243204 A279013
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 21 2011
STATUS
approved