login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053610
Number of positive squares needed to sum to n using the greedy algorithm.
28
1, 2, 3, 1, 2, 3, 4, 2, 1, 2, 3, 4, 2, 3, 4, 1, 2, 3, 4, 2, 3, 4, 5, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 2, 3, 4, 5, 1, 2, 3, 4, 2, 3, 4, 5, 3, 2, 3, 4, 5, 3, 4, 1, 2, 3, 4, 2, 3, 4, 5, 3, 2, 3, 4, 5, 3, 4, 5, 2, 1, 2, 3, 4, 2, 3, 4, 5, 3, 2, 3, 4, 5, 3, 4, 5, 2, 3, 4, 1, 2, 3, 4
OFFSET
1,2
COMMENTS
Define f(n) = n - x^2 where (x+1)^2 > n >= x^2. a(n) = number of iterations in f(...f(f(n))...) to reach 0.
a(n) = 1 iff n is a perfect square.
Also sum of digits when writing n in base where place values are squares, cf. A007961. - Reinhard Zumkeller, May 08 2011
The sequence could have started with a(0)=0. - Thomas Ordowski, Jul 12 2014
The sequence is not bounded, see A006892. - Thomas Ordowski, Jul 13 2014
LINKS
FORMULA
a(n) = A007953(A007961(n)). - Henry Bottomley, Jun 01 2000
a(n) = a(n - floor(sqrt(n))^2) + 1 = a(A053186(n)) + 1 [with a(0) = 0]. - Henry Bottomley, May 16 2000
A053610 = A002828 + A062535. - M. F. Hasler, Dec 04 2008
EXAMPLE
7=4+1+1+1, so 7 requires 4 squares using the greedy algorithm, so a(7)=4.
MAPLE
A053610 := proc(n)
local a, x;
a := 0 ;
x := n ;
while x > 0 do
x := x-A048760(x) ;
a := a+1 ;
end do:
a ;
end proc: # R. J. Mathar, May 13 2016
MATHEMATICA
f[n_] := (n - Floor[Sqrt[n]]^2); g[n_] := (m = n; c = 1; While[a = f[m]; a != 0, c++; m = a]; c); Table[ g[n], {n, 1, 105}]
PROG
(PARI) A053610(n, c=1)=while(n-=sqrtint(n)^2, c++); c \\ M. F. Hasler, Dec 04 2008
(Haskell)
a053610 n = s n $ reverse $ takeWhile (<= n) $ tail a000290_list where
s _ [] = 0
s m (x:xs) | x > m = s m xs
| otherwise = m' + s r xs where (m', r) = divMod m x
-- Reinhard Zumkeller, May 08 2011
(Python)
from math import isqrt
def A053610(n):
c = 0
while n:
n -= isqrt(n)**2
c += 1
return c # Chai Wah Wu, Aug 01 2023
CROSSREFS
Cf. A006892 (positions of records), A055401, A007961.
Cf. A000196, A000290, A057945 (summing triangular numbers).
Sequence in context: A191091 A098066 A096436 * A264031 A338482 A104246
KEYWORD
nonn
AUTHOR
Jud McCranie, Mar 19 2000
STATUS
approved