login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319931
a(n) = -(1/120)*n*(n - 3)*(n - 6)*(n^2 - 21*n + 8).
3
0, 1, 2, 0, -4, -6, 0, 21, 64, 135, 238, 374, 540, 728, 924, 1107, 1248, 1309, 1242, 988, 476, -378, -1672, -3519, -6048, -9405, -13754, -19278, -26180, -34684, -45036, -57505, -72384, -89991, -110670, -134792, -162756, -194990, -231952, -274131, -322048, -376257
OFFSET
0,3
FORMULA
a(n) = [x^5] DedekindEta(x)^n.
a(n) = A319933(n, 5).
From Chai Wah Wu, Jul 27 2022: (Start)
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 5.
G.f.: x*(-7*x^4 + 6*x^3 + 3*x^2 - 4*x + 1)/(x - 1)^6. (End)
MAPLE
a := n -> -(1/120)*n*(n-3)*(n-6)*(n^2-21*n+8):
seq(a(n), n=0..41);
PROG
(PARI) a(n)=-n*(n-3)*(n-6)*(n^2-21*n+8)/120 \\ Charles R Greathouse IV, Oct 21 2022
CROSSREFS
Cf. A000012 (m=0), A001489 (m=1), A080956 (m=2), A167541 (m=3), A319930 (m=4), this sequence (m=5), A319932 (m=6).
Cf. A319933.
Sequence in context: A213723 A104601 A233673 * A192133 A244109 A133144
KEYWORD
sign,easy
AUTHOR
Peter Luschny, Oct 02 2018
STATUS
approved